skip to main content


This content will become publicly available on May 13, 2025

Title: A compositional account of motifs, mechanisms, and dynamics in biochemical regulatory networks

Regulatory networks depict promoting or inhibiting interactions between molecules in a biochemical system. We introduce a category-theoretic formalism for regulatory networks, using signed graphs to model the networks and signed functors to describe occurrences of one network in another, especially occurrences of network motifs. With this foundation, we establish functorial mappings between regulatory networks and other mathematical models in biochemistry. We construct a functor from reaction networks, modeled as Petri nets with signed links, to regulatory networks, enabling us to precisely define when a reaction network could be a physical mechanism underlying a regulatory network. Turning to quantitative models, we associate a regulatory network with a Lotka-Volterra system of differential equations, defining a functor from the category of signed graphs to a category of parameterized dynamical systems. We extend this result from closed to open systems, demonstrating that Lotka-Volterra dynamics respects not only inclusions and collapsings of regulatory networks, but also the process of building up complex regulatory networks by gluing together simpler pieces. Formally, we use the theory of structured cospans to produce a lax double functor from the double category of open signed graphs to that of open parameterized dynamical systems. Throughout the paper, we ground the categorical formalism in examples inspired by systems biology.

 
more » « less
Award ID(s):
1839968
PAR ID:
10513253
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Arxiv
Date Published:
Journal Name:
Compositionality
Volume:
6
ISSN:
2631-4444
Page Range / eLocation ID:
2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Complex systems are characterized by intricate interactions between entities that evolve dynamically over time. Accurate inference of these dynamic relationships is crucial for understanding and predicting system behavior. In this paper, we propose Regulatory Temporal Interaction Network Inference (RiTINI) for inferring time-varying interaction graphs in complex systems using a novel combination of space-and-time graph attentions and graph neural ordinary differential equations (ODEs). RiTINI leverages time-lapse signals on a graph prior, as well as perturbations of signals at various nodes in order to effectively capture the dynamics of the underlying system. This approach is distinct from traditional causal inference networks, which are limited to inferring acyclic and static graphs. In contrast, RiTINI can infer cyclic, directed, and time-varying graphs, providing a more comprehensive and accurate representation of complex systems. The graph attention mechanism in RiTINI allows the model to adaptively focus on the most relevant interactions in time and space, while the graph neural ODEs enable continuous-time modeling of the system’s dynamics. We evaluate RiTINI’s performance on simulations of dynamical systems, neuronal networks, and gene regulatory networks, demonstrating its state-of-the-art capability in inferring interaction graphs compared to previous methods. 
    more » « less
  2. We study the stochastic spatial Lotka-Volterra model for predator-prey interaction subject to a periodically varying carrying capacity. The Lotka-Volterra model with on-site lattice occupation restrictions (i.e., finite local carrying capacity) that represent finite food resources for the prey population exhibits a continuous active-to-absorbing phase transition. The active phase is sustained by the existence of spatio-temporal patterns in the form of pursuit and evasion waves. Monte Carlo simulations on a two-dimensional lattice are utilized to investigate the effect of seasonal variations of the environment on species coexistence. The results of our simulations are also compared to a mean-field analysis in order to specifically delineate the impact of stochastic fluctuations and spatial correlations. We find that the parameter region of predator and prey coexistence is enlarged relative to the stationary situation when the carrying capacity varies periodically. The (quasi-)stationary regime of our periodically varying Lotka-Volterra predator-prey system shows qualitative agreement between the stochastic model and the mean-field approximation. However, under periodic carrying capacity-switching environments, the mean-field rate equations predict period-doubling scenarios that are washed out by internal reaction noise in the stochastic lattice model. Utilizing visual representations of the lattice simulations and dynamical correlation functions, we study how the pursuit and evasion waves are affected by ensuing resonance effects. Correlation function measurements indicate a time delay in the response of the system to sudden changes in the environment. Resonance features are observed in our simulations that cause prolonged persistent spatial correlations. Different effective static environments are explored in the extreme limits of fast and slow periodic switching. The analysis of the mean-field equations in the fast-switching regime enables a semi-quantitative description of the (quasi-)stationary state. 
    more » « less
  3. Abstract

    Our recent work on linear and affine dynamical systems has laid out a general framework for inferring the parameters of a differential equation model from a discrete set of data points collected from a system being modeled. It introduced a new class of inverse problems where qualitative information about the parameters and the associated dynamics of the system is determined for regions of the data space, rather than just for isolated experiments. Rigorous mathematical results have justified this approach and have identified common features that arise for certain classes of integrable models. In this work we present a thorough numerical investigation that shows that several of these core features extend to a paradigmatic linear-in-parameters model, the Lotka–Volterra (LV) system, which we consider in the conservative case as well as under the addition of terms that perturb the system away from this regime. A central construct for this analysis is a concise representation of parameter and dynamical features in the data space that we call thePn-diagram, which is particularly useful for visualization of the qualitative dependence of the system dynamics on data for low-dimensional (smalln) systems. Our work also exposes some new properties related to non-uniqueness that arise for these LV systems, with non-uniqueness manifesting as a multi-layered structure in the associatedP2-diagrams.

     
    more » « less
  4. A hybrid control architecture for nonlinear dynamical systems is described which combines the advantages of model based control with those of real-time learning. The idea is to generate input-output data from an error system involving the plant and a proposed model. A discretized Chen-Fliess functional series is then identified from this data and used in conjunction with the model for predictive control. This method builds on the authors’ previous work on model-free control of a single-input, single-output Lotka-Volterra system.The problem is revisited here, but now with the introduction of a model for the dynamics. The single-input, multiple-output version of the problem is also investigated as a way to enhance closed-loop performance 
    more » « less
  5. null (Ed.)
    Finding a compromise between tractability and realism has always been at the core of ecological modelling. The introduction of nonlinear functional responses in two-species models has reconciled part of this compromise. However, it remains unclear whether this compromise can be extended to multispecies models. Yet, answering this question is necessary in order to differentiate whether the explanatory power of a model comes from the general form of its polynomial or from a more realistic description of multispecies systems. Here, we study the probability of feasibility (the existence of at least one positive real equilibrium) in complex models by adding higher-order interactions and nonlinear functional responses to the linear Lotka–Volterra model. We characterize complexity by the number of free-equilibrium points generated by a model, which is a function of the polynomial degree and system’s dimension. We show that the probability of generating a feasible system in a model is an increasing function of its complexity, regardless of the specific mechanism invoked. Furthermore, we find that the probability of feasibility in a model will exceed that of the linear Lotka–Volterra model when a minimum level of complexity is reached. Importantly, this minimum level is modulated by parameter restrictions, but can always be exceeded via increasing the polynomial degree or system’s dimension. Our results reveal that conclusions regarding the relevance of mechanisms embedded in complex models must be evaluated in relation to the expected explanatory power of their polynomial forms. 
    more » « less