skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lotka-Volterra predator-prey model with periodically varying carrying capacity
We study the stochastic spatial Lotka-Volterra model for predator-prey interaction subject to a periodically varying carrying capacity. The Lotka-Volterra model with on-site lattice occupation restrictions (i.e., finite local carrying capacity) that represent finite food resources for the prey population exhibits a continuous active-to-absorbing phase transition. The active phase is sustained by the existence of spatio-temporal patterns in the form of pursuit and evasion waves. Monte Carlo simulations on a two-dimensional lattice are utilized to investigate the effect of seasonal variations of the environment on species coexistence. The results of our simulations are also compared to a mean-field analysis in order to specifically delineate the impact of stochastic fluctuations and spatial correlations. We find that the parameter region of predator and prey coexistence is enlarged relative to the stationary situation when the carrying capacity varies periodically. The (quasi-)stationary regime of our periodically varying Lotka-Volterra predator-prey system shows qualitative agreement between the stochastic model and the mean-field approximation. However, under periodic carrying capacity-switching environments, the mean-field rate equations predict period-doubling scenarios that are washed out by internal reaction noise in the stochastic lattice model. Utilizing visual representations of the lattice simulations and dynamical correlation functions, we study how the pursuit and evasion waves are affected by ensuing resonance effects. Correlation function measurements indicate a time delay in the response of the system to sudden changes in the environment. Resonance features are observed in our simulations that cause prolonged persistent spatial correlations. Different effective static environments are explored in the extreme limits of fast and slow periodic switching. The analysis of the mean-field equations in the fast-switching regime enables a semi-quantitative description of the (quasi-)stationary state.  more » « less
Award ID(s):
2128587
PAR ID:
10505692
Author(s) / Creator(s):
;
Publisher / Repository:
The American Physical Society
Date Published:
Journal Name:
Physical Review E
Volume:
107
Issue:
6
ISSN:
2470-0045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We apply a perturbative Doi-Peliti field-theoretical analysis to the stochastic spatially extended symmetric Rock-paper-Scissors (RPS) and May-Leonard (ML) models, in which three species compete cyclically. Compared to the two-species Lotka-Volterra predator-prey (LV) model, according to numerical simulations, these cyclical models appear to be less affected by intrinsic stochastic fluctuations. Indeed, we demonstrate that the qualitative features of the ML model are insensitive to intrinsic reaction noise. In contrast, and although not yet observed in numerical simulations, we find that the RPS model acquires significant fluctuation-induced renormalizations in the perturbative regime, similar to the LV model. We also study the formation of spatio-temporal structures in the framework of stability analysis and provide a clearcut explanation for the absence of spatial patterns in the RPS system, whereas the spontaneous emergence of spatio-temporal structures features prominently in the LV and the ML models. 
    more » « less
  2. For species primarily regulated by a common predator, the P * rule of Holt & Lawton (Holt & Lawton, 1993. Am. Nat. 142 , 623–645. ( doi:10.1086/285561 )) predicts that the prey species that supports the highest mean predator density ( P *) excludes the other prey species. This prediction is re-examined in the presence of temporal fluctuations in the vital rates of the interacting species including predator attack rates. When the fluctuations in predator attack rates are temporally uncorrelated, the P * rule still holds even when the other vital rates are temporally auto-correlated. However, when temporal auto-correlations in attack rates are positive but not too strong, the prey species can coexist due to the emergence of a positive covariance between predator density and prey vulnerability. This coexistence mechanism is similar to the storage effect for species regulated by a common resource. Negative or strongly positive auto-correlations in attack rates generate a negative covariance between predator density and prey vulnerability and a stochastic priority effect can emerge: with non-zero probability either prey species is excluded. These results highlight how temporally auto-correlated species’ interaction rates impact the structure and dynamics of ecological communities. 
    more » « less
  3. Abstract Despite the well known scale‐dependency of ecological interactions, relatively little attention has been paid to understanding the dynamic interplay between various spatial scales. This is especially notable in metacommunity theory, where births and deaths dominate dynamics within patches (the local scale), and dispersal and environmental stochasticity dominate dynamics between patches (the regional scale). By considering the interplay of local and regional scales in metacommunities, the fundamental processes of community ecology—selection, drift, and dispersal—can be unified into a single theoretical framework. Here, we analyze three related spatial models that build on the classic two‐species Lotka–Volterra competition model. Two open‐system models focus on a single patch coupled to a larger fixed landscape by dispersal. The first is deterministic, while the second adds demographic stochasticity to allow ecological drift. Finally, the third model is a true metacommunity model with dispersal between a large number of local patches, which allows feedback between local and regional scales and captures the well studied metacommunity paradigms as special cases. Unlike previous simulation models, our metacommunity model allows the numerical calculation of equilibria and invasion criteria to precisely determine the outcome of competition at the regional scale. We show that both dispersal and stochasticity can lead to regional outcomes that are different than predicted by the classic Lotka–Volterra competition model. Regional exclusion can occur when the nonspatial model predicts coexistence or founder control, due to ecological drift or asymmetric stochastic switching between basins of attraction, respectively. Regional coexistence can result from local coexistence mechanisms or through competition‐colonization or successional‐niche trade‐offs. Larger dispersal rates are typically competitively advantageous, except in the case of local founder control, which can favor intermediate dispersal rates. Broadly, our models demonstrate the importance of feedback between local and regional scales in competitive metacommunities and provide a unifying framework for understanding how selection, drift, and dispersal jointly shape ecological communities. 
    more » « less
  4. The dynamics of ecological communities in nature are typically characterized by probabilistic processes involving invasion dynamics. Because of technical challenges, however, the majority of theoretical and experimental studies have focused on coexistence dynamics. Therefore, it has become central to understand the extent to which coexistence outcomes can be used to predict analogous invasion outcomes relevant to systems in nature. Here, we study the limits to this predictability under a geometric and probabilistic Lotka– Volterra framework. We show that while individual survival probability in coexistence dynamics can be fairly closely translated into invader colonization probability in invasion dynamics, the translation is less precise between community persistence and community augmentation, and worse between exclusion probability and replacement probability. These results provide a guiding and testable theoretical framework regarding the translatability of outcomes between coexistence and invasion outcomes when communities are represented by Lotka–Volterra dynamics under environmental uncertainty. 
    more » « less
  5. Abstract To understand the mechanisms underlying species coexistence, ecologists often study invasion growth rates of theoretical and data-driven models. These growth rates correspond to average per-capita growth rates of one species with respect to an ergodic measure supporting other species. In the ecological literature, coexistence often is equated with the invasion growth rates being positive. Intuitively, positive invasion growth rates ensure that species recover from being rare. To provide a mathematically rigorous framework for this approach, we prove theorems that answer two questions: (i) When do the signs of the invasion growth rates determine coexistence? (ii) When signs are sufficient, which invasion growth rates need to be positive? We focus on deterministic models and equate coexistence with permanence, i.e., a global attractor bounded away from extinction. For models satisfying certain technical assumptions, we introduce invasion graphs where vertices correspond to proper subsets of species (communities) supporting an ergodic measure and directed edges correspond to potential transitions between communities due to invasions by missing species. These directed edges are determined by the signs of invasion growth rates. When the invasion graph is acyclic (i.e. there is no sequence of invasions starting and ending at the same community), we show that permanence is determined by the signs of the invasion growth rates. In this case, permanence is characterized by the invasibility of all$$-i$$ - i communities, i.e., communities without speciesiwhere all other missing species have negative invasion growth rates. To illustrate the applicability of the results, we show that dissipative Lotka-Volterra models generically satisfy our technical assumptions and computing their invasion graphs reduces to solving systems of linear equations. We also apply our results to models of competing species with pulsed resources or sharing a predator that exhibits switching behavior. Open problems for both deterministic and stochastic models are discussed. Our results highlight the importance of using concepts about community assembly to study coexistence. 
    more » « less