skip to main content


This content will become publicly available on November 14, 2024

Title: Colloidal Synthesis of Homogeneous Ge1-x-ySiySnx Nanoalloys with Composition-Tunable Visible to Near IR Optical Properties
Group IV alloy nanocrystals (NCs) are a class of direct energy gap semiconductors that show high elemental abundance, low to non-toxicity, and composition-tunable absorption and emission properties. These properties have distinguished Ge1-xSnx NCs as an intriguing material for near-infrared (IR) optical studies. Achieving a material with efficient visible emission requires a modified class of Group IV alloys and the computational studies suggest that this can be achieved with Ge1-x-ySiySnx NCs. Herein, we report a colloidal strategy for the synthesis of bulk-like (10.3 ± 2.5 – 25.5 ± 5.3 nm) and quantum-confined (3.2 ± 0.6 – 4.2 ± 1.1 nm) Ge1-x-ySiySnx alloys that show strong size confinement effects and composition-tunable visible to near IR absorption and emission properties. This synthesis produces a homogeneous alloy with diamond cubic Ge structure and tunable Si (0.9 – 16.1%) and Sn (1.8 – 14.9%) compositions, exceeding the equilibrium solubility of Sn (<1%) in crystalline Si and Ge. Raman spectra of Ge1-x-ySiySnx alloys show a prominent redshift of the Ge-Ge peak and the emergence of a Ge-Si peak with increasing Si/Sn, suggesting the growth of homogeneous alloys. The smaller Ge1-x-ySiySnx NCs exhibit absorption onsets from 1.21 to 1.94 eV for x = 1.8 – 6.8% and y = 0.9 – 16.1% compositions, which are blueshifted from those reported for Ge1-x-ySiySnx bulk alloy films and Ge1-xSnx alloy NCs, indicating the influence of Si incorporation and strong size confinement effects. Solid-state photoluminescence (PL) spectra reveal core-related PL maxima from 1.77 – 1.97 eV in agreement with absorption onsets, consistent with the energy gaps calculated for ~3–4 nm alloy NCs. With facile low-temperature solution synthesis and direct control over physical properties, this methodology presents a noteworthy advancement in the synthesis of bulk-like and quantum-confined Ge1-x-ySiySnx alloys as versatile materials for future optical and electronic studies.  more » « less
Award ID(s):
2211606
NSF-PAR ID:
10513376
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Chemistry of Materials
Volume:
35
Issue:
21
ISSN:
0897-4756
Page Range / eLocation ID:
9007 to 9018
Subject(s) / Keyword(s):
Quantum dots, Gi/Ge/Sn alloys
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The near-bandgap optical properties of Ge1-xSnx alloys were characterized by photovoltage spectroscopy and spectral ellipsometry measurements. Contributions of Urbach tailing as well as direct and indirect optical transitions were observed. The compositional dependence of direct bandgaps of strained GeSn films grown on a Ge buffered Si substrate was studied for up to 15% Sn content. The contribution to the photovoltage spectra of Ge1-xSnx alloys (x < 6%) from indirect optical transitions was observed at lower energies than from direct bandgaps. Using bowing parameters, a correlation was detected between calculated and measured indirect and direct bandgaps at 82 K. As the Sn content was increased, the difference between the energies of the indirect and direct bandgaps decreased, resulting in a smaller contribution of the indirect transitions due to competition with direct transitions and Urbach tails. Two sublayers with different Sn content, strain values and bandgaps were observed for samples with x ~12%. The results indicated that strain relaxation in films with thicknesses exceeding a critical value occurs via formation of a Sn-rich top layer with higher direct bandgap. These findings have important implications when designing IR photodetectors or solar cells. 
    more » « less
  2. Short-range atomic order in semiconductor alloys is a relatively unexplored topic that may promote design of new materials with unexpected properties. Here, local atomic ordering is investigated in Ge–Sn alloys, a group-IV system that is attractive for its enhanced optoelectronic properties achievable via a direct gap for Sn concentrations exceeding ≈10 at. %. The substantial misfit strain imposed on Ge–Sn thin films during growth on bulk Si or Ge substrates can induce defect formation; however, misfit strain can be accommodated by growing Ge–Sn alloy films on Ge nanowires, which effectively act as elastically compliant substrates. In this work, Ge core/Ge 1−x Sn x ( x ≈  0.1) shell nanowires were characterized with extended x-ray absorption fine structure (EXAFS) to elucidate their local atomic environment. Simultaneous fitting of high-quality EXAFS data collected at both the Ge K-edge and the Sn K-edge reveals a large (≈ 40%) deficiency of Sn in the first coordination shell around a Sn atom relative to a random alloy, thereby providing the first direct experimental evidence of significant short-range order in this semiconductor alloy system. Comparison of path length data from the EXAFS measurements with density functional theory simulations provides alloy atomic structures consistent with this conclusion. 
    more » « less
  3. We report the synthesis of Ge1−ySny films containing 6%–13% Sn directly on Si(100) for monolithic integration applications, circumventing the use of conventional Ge-buffer layers. The films are produced in a gas source molecular epitaxy chamber at ultralow temperatures of 185–210 °C and a pressure of 10−5 Torr by the reactions of pure vapor Ge4H10 and SnD4 or SnH4 without carrier gases. Very small amounts of Si, incorporated via the Si4H10 precursor, can be used to improve the structural properties. All samples were characterized by XRD, RBS, IR-ellipsometry, AFM, and TEM, indicating the formation of monocrystalline single-phase films with relatively low defectivity and flat surfaces. A notable highlight is that the residual strains of the alloy layers are much lower compared to those grown on Ge buffers and can be further reduced by rapid thermal annealing without decomposition, indicating that growth on bare silicon should produce bulklike, high Sn content alloys that cannot be accessed using Ge buffers. N-type analogs of the above samples doped with phosphorus were also produced using P(SiH3)3 as the in situ dopant precursor. The results collectively illustrate the potential of our chemistry-based method to generate good quality Ge1−ySny layers directly on large area Si wafers bypassing Ge buffers that typically lead to complications such as multiple hetero-interfaces and epitaxial breakdown at high Sn concentrations. 
    more » « less
  4. Size-confined Si nanorods (NRs) have gained notable interest because of their tunable photophysical properties that make them attractive for optoelectronic, charge storage, and sensor technologies. However, established routes for fabrication of Si NRs use well-defined substrates and/or nanoscopic seeds as promoters that cannot be easily removed, hindering the investigation of their true potential and physical properties. Herein, we report a facile, one-step route for the fabrication of Si NRs via thermal disproportionation of hydrogen silsesquioxane (HSQ) in the presence of a molecular tin precursor (SnCl4) at a substantially lower temperature (450 ºC) compared to those used in the synthesis of size-confined Si nanocrystals (>1000 ºC). The use of these precursors allows the facile isolation of phase pure Si NRs via HF etching and subsequent surface passivation with 1-dodecene via hydrosilylation. The diameters (7.7–16.5 nm) of the NRs can be controlled by varying the amount of SnCl4 (0.2–3.0%) introduced during the HSQ synthesis. Physical characterization of the NRs suggests that the diamond cubic structure is not affected by the SnCl4, HF etching, and hydrosilylation. Surface analysis of NRs indicates the presence of Si0 and Sin+ species, which can be attributed to core Si and surface Si species bonded to dodecane ligands, respectively, and a systematic variation of Si0: Si-C ratio with the NR diameter. The NRs show strong size confinement effects with solid-state absorption onsets (2.51–2.80 eV) and solution-state (Tauc) indirect energy gaps (2.54–2.70 eV) that can be tuned by varying the diameters (16.5–7.7 nm), respectively. Photoluminescence (PL) and time-resolved PL (TRPL) studies reveal size-dependent emission (1.95–2.20 eV) with short, nanosecond lifetimes across the visible spectrum which trend closely to absorption trends seen in solid-state absorption data. The facile synthesis developed for size-confined Si NRs with high crystallinity and tunable optical properties will promote their application in optoelectronic, charge storage, and sensing studies. 
    more » « less
  5. Synthesis of device-quality GeSn materials with higher Sn compositions is hindered by various factors, such as Sn segregation, clustering, and short-range ordering effects. In the present work, the impact of the clustering of Sn atoms in a GeSn semiconductor alloy was studied by density functional theory using SG15 pseudopotentials in a Synopsys QuantumATK tool, where the thermodynamic stability, effective band structure, indirect and direct bandgaps, and density of states (DOS) were computed to highlight the difference between a cluster-free random GeSn alloy and a GeSn alloy with Sn–Sn clusters. A 54-atom bulk Ge1–xSnx (x = 3.71%–27.77%) supercell was constructed with cluster-free and a first nearest neighbor Sn–Sn clustered GeSn alloy at each composition for this work. Computation using the generalized gradient approximation exchange-correlation functional showed that the thermodynamic stability of GeSn was reduced due to the clustering of Sn, which increased the formation energy of the GeSn alloys by increasing the Hartree potential energy and exchange-correlation energy. Moreover, with the effective band structure of the GeSn material at a Sn composition of ∼22%, both direct (Eg,Γ) and indirect (Eg,L) bandgaps decreased by a large margin of 40.76 and 120.17 meV, respectively, due to Sn–Sn clustering. On the other hand, Eg,Γ and Eg,L decrease is limited to 0.5 and 12.8 meV, respectively, for Sn composition of ∼5.6%. Similar impacts were observed on DOS, in an independent computation without deducing from the electronic band structure, where the width of the forbidden band reduces due to the clustering of Sn atoms in GeSn. Moreover, using the energy bandgaps of GeSn computed with the assumption of it being a random alloy having well-dispersed Sn atoms needs revision by incorporating clustering to align with the experimentally determined bandgap. This necessitates incorporating the effect of Sn atoms clustered together at varying distributions based on experimental characterization techniques such as atom probe tomography or extended x-ray absorption fine structure to substantiate the energy bandgap of the GeSn alloy at a particular composition with precision. Hence, considering the effect of Sn clusters during material characterization, beginning with the accurate energy bandgap characterization of GeSn would help in mitigating the effect of process variations on the performance characteristics of GeSn-based group IV electronic and photonic devices such as varying leakage currents in transistors and photodiodes as well as the deviation from the targeted wavelength of operation in lasers and photodetectors.

     
    more » « less