skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Underground Heroes: Plants and Microbes Partner to Shape Our World
Did you know that microbes and plants can help each other survive? Microbes—like bacteria and fungi, for example—can help plants find food and water and can even make them healthier during stressful times. In return, plants give microbes food and a place to live. The world as we know it would not exist without plants, microbes, and their partnerships. Unfortunately, changes to climate will also change our environments. Therefore, studying how plants and microbes partner will help us predict environmental changes to our planet and its inhabitants. In this article, we discuss how microbes and plants partner to support life on Earth.  more » « less
Award ID(s):
2109481
PAR ID:
10513457
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers for Young Minds
Volume:
11
ISSN:
2296-6846
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Did you know health is not just about not being sick? It is about feeling well. In healthy ecosystems, you can find plants, animals, water, rocks, and soil, all interacting with many microbes. Thanks to this biodiversity we have clean air, fresh water, and nutritious food. Bees and other animals pollinate flowers to help grow fruits and vegetables. Birds spread seeds that grow into trees and forests. Plants clean the air we breathe. And people feel better in nature. Healthy ecosystems, therefore, keep people healthy. While public health programs teach people about healthy food and give them access to medicines, people make ecosystems healthier by protecting nature. You can help too, by taking care of your health and your surrounding ecosystem, learning about the world, and supporting decisions and actions that protect nature and people. By becoming guardians of Earth’s biodiversity, we can all have a healthy future together. 
    more » « less
  2. Did you know that fungi, like mushrooms and molds, are super important for our planet? Fungi can form critical relationships with other organisms. For example, many plants rely on fungi to help them grow and thrive. However, fungi are not always friendly and sometimes they can hurt plants by causing disease. Did you also know that there are fungi in the ocean? While you might not be able to see these fungi when you go to the beach (because they can only be seen with a microscope), they are found everywhere in the ocean. Marine fungi are pretty cool, but we do not know a lot about them yet or what roles they play in the ocean. Scientists are starting to learn more about how marine fungi help the ocean and keep our planet healthy. This article will explore the amazing world of marine fungi! 
    more » « less
  3. Some organisms can produce their own food through a process called photosynthesis. These organisms transform light energy, carbon dioxide, and water into sugars, which allow them to grow their bodies, reproduce, and be a source of energy for other organisms. Studying photosynthesis in nature and in the laboratory has given scientists important insights into the effects of climate change on plants and other photosynthetic organisms. For example, such studies help scientists understand whether there will continue to be enough food for humans to eat as the climate changes. In this article, we discuss the importance of photosynthetic organisms; how light energy, carbon dioxide, and water are transformed into sugar during photosynthesis; the challenges that today’s land plants face; and how and why scientists measure photosynthesis in plants. 
    more » « less
  4. Abstract Plant–soil feedbacks (PSFs) drive plant community diversity via interactions between plants and soil microbes. However, we know little about how frequently PSFs affect plants at the seed stage, and the compositional shifts in fungi that accompany PSFs on germination.We conducted a pairwise PSF experiment to test whether seed germination was differentially impacted by conspecific versus heterospecific soils for seven grassland species. We used metagenomics to characterize shifts in fungal community composition in soils conditioned by each plant species. To investigate whether changes in the abundance of certain fungal taxa were associated with multiple PSFs, we assigned taxonomy to soil fungi and identified putative pathogens that were significantly more abundant in soils conditioned by plant species that experienced negative or positive PSFs.We observed negative, positive, and neutral PSFs on seed germination. Although conspecific and heterospecific soils for pairs with significant PSFs contained host‐specialized soil fungal communities, soils with specialized microbial communities did not always lead to PSFs. The identity of host‐specialized pathogens, that is, taxa uniquely present or significantly more abundant in soils conditioned by plant species experiencing negative PSFs, overlapped among plant species, while putative pathogens within a single host plant species differed depending on the identity of the heterospecific plant partner. Finally, the magnitude of feedback on germination was not related to the degree of fungal community differentiation between species pairs involved in negative PSFs.Synthesis. Our findings reveal the potential importance of PSFs at the seed stage. Although plant species developed specialized fungal communities in rhizosphere soil, pathogens were not strictly host‐specific and varied not just between plant species, but according to the identity of plant partner. These results illustrate the complexity of microbe‐mediated interactions between plants at different life stages that next‐generation sequencing can begin to unravel. 
    more » « less
  5. PremiseNutrients, light, water, and temperature are key factors limiting the growth of individual plants in nature. Mutualistic interactions between plants and microbes often mediate resource limitation for both partners. In the mutualism between legumes and rhizobia, plants provide rhizobia with carbon in exchange for fixed nitrogen. Because partner quality in mutualisms is genotype‐dependent, within‐species genetic variation is expected to alter the responses of mutualists to changes in the resource environment. Here we ask whether partner quality variation in rhizobia mediates the response of host plants to changing light availability, and conversely, whether light alters the expression of partner quality variation. MethodsWe inoculated clover hosts with 11 strains ofRhizobium leguminosarumthat differed in partner quality, grew plants under either ambient or low light conditions in the greenhouse, and measured plant growth, nodule traits, and foliar nutrient composition. ResultsLight availability and rhizobium inoculum interactively determined plant growth, and variation in rhizobium partner quality was more apparent in ambient light. ConclusionsOur results suggest that variation in the costs and benefits of rhizobium symbionts mediate host responses to light availability and that rhizobium strain variation might more important in higher‐light environments. Our work adds to a growing appreciation for the role of microbial intraspecific and interspecific diversity in mediating extended phenotypes in their hosts and suggests an important role for light availability in the ecology and evolution of legume–rhizobium symbiosis. 
    more » « less