How to cluster event sequences generated via different point processes is an interesting and important problem in statistical machine learning. To solve this problem, we propose and discuss an effective model-based clustering method based on a novel Dirichlet mixture model of a special but significant type of point processes — Hawkes process. The proposed model generates the event sequences with different clusters from the Hawkes processes with different parameters, and uses a Dirichlet distribution as the prior distribution of the clusters. We prove the identifiability of our mixture model and propose an effective variational Bayesian inference algorithm to learn our model. An adaptive inner iteration allocation strategy is designed to accelerate the convergence of our algorithm. Moreover, we investigate the sample complexity and the computational complexity of our learning algorithm in depth. Experiments on both synthetic and real-world data show that the clustering method based on our model can learn structural triggering patterns hidden in asynchronous event sequences robustly and achieve superior performance on clustering purity and consistency compared to existing methods.
more »
« less
Nonparametric clustering of RNA-sequencing data
Abstract Identification of clusters of co‐expressed genes in transcriptomic data is a difficult task. Most algorithms used for this purpose can be classified into two broad categories: distance‐based or model‐based approaches. Distance‐based approaches typically utilize a distance function between pairs of data objects and group similar objects together into clusters. Model‐based approaches are based on using the mixture‐modeling framework. Compared to distance‐based approaches, model‐based approaches offer better interpretability because each cluster can be explicitly characterized in terms of the proposed model. However, these models present a particular difficulty in identifying a correct multivariate distribution that a mixture can be based upon. In this manuscript, we review some of the approaches used to select a distribution for the needed mixture model first. Then, we propose avoiding this problem altogether by using a nonparametric MSL (maximum smoothed likelihood) algorithm. This algorithm was proposed earlier in statistical literature but has not been, to the best of our knowledge, applied to transcriptomics data. The salient feature of this approach is that it avoids explicit specification of distributions of individual biological samples altogether, thus making the task of a practitioner easier. We performed both a simulation study and an application of the proposed algorithm to two different real datasets. When used on a real dataset, the algorithm produces a large number of biologically meaningful clusters and performs at least as well as several other mixture‐based algorithms commonly used for RNA‐seq data clustering. Our results also show that this algorithm is capable of uncovering clustering solutions that may go unnoticed by several other model‐based clustering algorithms. Our code is publicly available on Github at https://github.com/Matematikoi/non_parametric_clustering
more »
« less
- Award ID(s):
- 2311103
- PAR ID:
- 10513478
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Statistical Analysis and Data Mining: The ASA Data Science Journal
- Volume:
- 16
- Issue:
- 6
- ISSN:
- 1932-1864
- Page Range / eLocation ID:
- 547 to 559
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The information bottleneck (IB) approach to clustering takes a joint distribution [Formula: see text] and maps the data [Formula: see text] to cluster labels [Formula: see text], which retain maximal information about [Formula: see text] (Tishby, Pereira, & Bialek, 1999 ). This objective results in an algorithm that clusters data points based on the similarity of their conditional distributions [Formula: see text]. This is in contrast to classic geometric clustering algorithms such as [Formula: see text]-means and gaussian mixture models (GMMs), which take a set of observed data points [Formula: see text] and cluster them based on their geometric (typically Euclidean) distance from one another. Here, we show how to use the deterministic information bottleneck (DIB) (Strouse & Schwab, 2017 ), a variant of IB, to perform geometric clustering by choosing cluster labels that preserve information about data point location on a smoothed data set. We also introduce a novel intuitive method to choose the number of clusters via kinks in the information curve. We apply this approach to a variety of simple clustering problems, showing that DIB with our model selection procedure recovers the generative cluster labels. We also show that, in particular limits of our model parameters, clustering with DIB and IB is equivalent to [Formula: see text]-means and EM fitting of a GMM with hard and soft assignments, respectively. Thus, clustering with (D)IB generalizes and provides an information-theoretic perspective on these classic algorithms.more » « less
-
Modern neural recording techniques allow neuroscientists to observe the spiking activity of many neurons simultaneously. Although previous work has illustrated how activity within and between known populations of neurons can be summarized by low-dimensional latent vectors, in many cases what determines a unique population may be unclear. Neurons differ in their anatomical location, but also, in their cell types and response properties. Moreover, multiple distinct populations may not be well described by a single low-dimensional, linear representation.To tackle these challenges, we develop a clustering method based on a mixture of dynamic Poisson factor analyzers (DPFA) model, with the number of clusters treated as an unknown parameter. To do the analysis of DPFA model, we propose a novel Markov chain Monte Carlo (MCMC) algorithm to efficiently sample its posterior distribution. Validating our proposed MCMC algorithm with simulations, we find that it can accurately recover the true clustering and latent states and is insensitive to the initial cluster assignments. We then apply the proposed mixture of DPFA model to multi-region experimental recordings, where we find that the proposed method can identify novel, reliable clusters of neurons based on their activity, and may, thus, be a useful tool for neural data analysis.more » « less
-
Abstract One key challenge encountered in single-cell data clustering is to combine clustering results of data sets acquired from multiple sources. We propose to represent the clustering result of each data set by a Gaussian mixture model (GMM) and produce an integrated result based on the notion of Wasserstein barycenter. However, the precise barycenter of GMMs, a distribution on the same sample space, is computationally infeasible to solve. Importantly, the barycenter of GMMs may not be a GMM containing a reasonable number of components. We thus propose to use the minimized aggregated Wasserstein (MAW) distance to approximate the Wasserstein metric and develop a new algorithm for computing the barycenter of GMMs under MAW. Recent theoretical advances further justify using the MAW distance as an approximation for the Wasserstein metric between GMMs. We also prove that the MAW barycenter of GMMs has the same expectation as the Wasserstein barycenter. Our proposed algorithm for clustering integration scales well with the data dimension and the number of mixture components, with complexity independent of data size. We demonstrate that the new method achieves better clustering results on several single-cell RNA-seq data sets than some other popular methods.more » « less
-
In model-based clustering, the population is assumed to be a combination of sub-populations. Typically, each sub-population is modeled by a mixture model component, distributed according to a known probability distribution. Each component is considered a cluster. Two primary approaches have been used in the literature when clusters are skewed: (1) transforming the data within each cluster and applying a mixture of symmetric distributions to the transformed data, and (2) directly modeling each cluster using a skewed distribution. Among skewed distributions, the generalized hyperbolic distribution is notably flexible and includes many other known distributions as special or limiting cases. This paper achieves two goals. First, it extends the flexibility of transformation-based methods as outlined in approach (1) by employing a flexible symmetric generalized hyperbolic distribution to model each transformed cluster. This innovation results in the introduction of two new models, each derived from distinct within-cluster data transformations. Second, the paper benchmarks the approaches listed in (1) and (2) for handling skewness using both simulated and real data. The findings highlight the necessity of both approaches in varying contexts.more » « less
An official website of the United States government

