skip to main content


Title: The Information Bottleneck and Geometric Clustering
The information bottleneck (IB) approach to clustering takes a joint distribution [Formula: see text] and maps the data [Formula: see text] to cluster labels [Formula: see text], which retain maximal information about [Formula: see text] (Tishby, Pereira, & Bialek, 1999 ). This objective results in an algorithm that clusters data points based on the similarity of their conditional distributions [Formula: see text]. This is in contrast to classic geometric clustering algorithms such as [Formula: see text]-means and gaussian mixture models (GMMs), which take a set of observed data points [Formula: see text] and cluster them based on their geometric (typically Euclidean) distance from one another. Here, we show how to use the deterministic information bottleneck (DIB) (Strouse & Schwab, 2017 ), a variant of IB, to perform geometric clustering by choosing cluster labels that preserve information about data point location on a smoothed data set. We also introduce a novel intuitive method to choose the number of clusters via kinks in the information curve. We apply this approach to a variety of simple clustering problems, showing that DIB with our model selection procedure recovers the generative cluster labels. We also show that, in particular limits of our model parameters, clustering with DIB and IB is equivalent to [Formula: see text]-means and EM fitting of a GMM with hard and soft assignments, respectively. Thus, clustering with (D)IB generalizes and provides an information-theoretic perspective on these classic algorithms.  more » « less
Award ID(s):
1734030
NSF-PAR ID:
10169886
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Neural Computation
Volume:
31
Issue:
3
ISSN:
0899-7667
Page Range / eLocation ID:
596 to 612
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ranzato, M. ; Beygelzimer, A. ; Dauphin, Y. ; Liang, P.S. ; Vaughan, J. W. (Ed.)
    We provide theoretical guarantees for label consistency in generalized k-means problems, with an emphasis on the overfitted case where the number of clusters used by the algorithm is more than the ground truth. We provide conditions under which the estimated labels are close to a refinement of the true cluster labels. We consider both exact and approximate recovery of the labels. Our results hold for any constant-factor approximation to the k-means problem. The results are also model-free and only based on bounds on the maximum or average distance of the data points to the true cluster centers. These centers themselves are loosely defined and can be taken to be any set of points for which the aforementioned distances can be controlled. We show the usefulness of the results with applications to some manifold clustering problems. 
    more » « less
  2. Motivation: Software engineering for High Performace Computing (HPC) environments in general [1] and for big data in particular [5] faces a set of unique challenges including high complexity of middleware and of computing environments. Tools that make it easier for scientists to utilize HPC are, therefore, of paramount importance. We provide an experience report of using one of such highly effective middleware pbdR [9] that allow the scientist to use R programming language without, at least nominally, having to master many layers of HPC infrastructure, such as OpenMPI [4] and ScalaPACK [2]. Objective: to evaluate the extent to which middleware helps improve scientist productivity, we use pbdR to solve a real problem that we, as scientists, are investigating. Our big data comes from the commits on GitHub and other project hosting sites and we are trying to cluster developers based on the text of these commit messages. Context: We need to be able to identify developer for every commit and to identify commits for a single developer. Developer identifiers in the commits, such as login, email, and name are often spelled in multiple ways since that information may come from different version control systems (Git, Mercurial, SVN, ...) and may depend on which computer is used (what is specified in .git/config of the home folder). Method: We train Doc2Vec [7] model where existing credentials are used as a document identifier and then use the resulting 200-dimensional vectors for the 2.3M identifiers to cluster these identifiers so that each cluster represents a specific individual. The distance matrix occupies 32TB and, therefore, is a good target for HPC in general and pbdR in particular. pbdR allows data to be distributed over computing nodes and even has implemented K-means and mixture-model clustering techniques in the package pmclust. Results: We used strategic prototyping [3] to evaluate the capabilities of pbdR and discovered that a) the use of middleware required extensive understanding of its inner workings thus negating many of the expected benefits; b) the implemented algorithms were not suitable for the particular combination of n, p, and k (sample size, data dimension, and the number of clusters); c) the development environment based on batch jobs increases development time substantially. Conclusions: In addition to finding from Basili et al., we find that the quality of the implementation of HPC infrastructure and its development environment has a tremendous effect on development productivity. 
    more » « less
  3. Human activity recognition (HAR) is an important component in a number of health applications, including rehabilitation, Parkinson’s disease, daily activity monitoring, and fitness monitoring. State-of-the-art HAR approaches use multiple sensors on the body to accurately identify activities at runtime. These approaches typically assume that data from all sensors are available for runtime activity recognition. However, data from one or more sensors may be unavailable due to malfunction, energy constraints, or communication challenges between the sensors. Missing data can lead to significant degradation in the accuracy, thus affecting quality of service to users. A common approach for handling missing data is to train classifiers or sensor data recovery algorithms for each combination of missing sensors. However, this results in significant memory and energy overhead on resource-constrained wearable devices. In strong contrast to prior approaches, this paper presents a clustering-based approach (CIM) to impute missing data at runtime. We first define a set of possible clusters and representative data patterns for each sensor in HAR. Then, we create and store a mapping between clusters across sensors. At runtime, when data from a sensor are missing, we utilize the stored mapping table to obtain most likely cluster for the missing sensor. The representative window for the identified cluster is then used as imputation to perform activity classification. We also provide a method to obtain imputation-aware activity prediction sets to handle uncertainty in data when using imputation. Experiments on three HAR datasets show that CIM achieves accuracy within 10% of a baseline without missing data for one missing sensor when providing single activity labels. The accuracy gap drops to less than 1% with imputation-aware classification. Measurements on a low-power processor show that CIM achieves close to 100% energy savings compared to state-of-the-art generative approaches.

     
    more » « less
  4. We consider the problem of estimating the discrete clustering structures under the sub-Gaussian mixture model. Our main results establish a hidden integrality property of a semidefinite programming (SDP) relaxation for this problem: while the optimal solution to the SDP is not integer-valued in general, its estimation error can be upper bounded by that of an idealized integer program. The error of the integer program, and hence that of the SDP, are further shown to decay exponentially in the signal-to-noise ratio. In addition, we show that the SDP relaxation is robust under the semirandom setting in which an adversary can modify the data generated from the mixture model. In particular, we generalize the hidden integrality property to the semirandom model and thereby show that SDP achieves the optimal error bound in this setting. These results together highlight the “global-to-local” mechanism that drives the performance of the SDP relaxation. To the best of our knowledge, our result is the first exponentially decaying error bound for convex relaxations of mixture models. A corollary of our results shows that in certain regimes, the SDP solutions are in fact integral and exact. More generally, our results establish sufficient conditions for the SDP to correctly recover the cluster memberships of [Formula: see text] fraction of the points for any [Formula: see text]. As a special case, we show that under the [Formula: see text]-dimensional stochastic ball model, SDP achieves nontrivial (sometimes exact) recovery when the center separation is as small as [Formula: see text], which improves upon previous exact recovery results that require constant separation. 
    more » « less
  5. We consider the problem of clustering in the learning-augmented setting. We are given a data set in $d$-dimensional Euclidean space, and a label for each data point given by a predictor indicating what subsets of points should be clustered together. This setting captures situations where we have access to some auxiliary information about the data set relevant for our clustering objective, for instance the labels output by a neural network. Following prior work, we assume that there are at most an $\alpha \in (0,c)$ for some $c<1$ fraction of false positives and false negatives in each predicted cluster, in the absence of which the labels would attain the optimal clustering cost $\mathrm{OPT}$. For a dataset of size $m$, we propose a deterministic $k$-means algorithm that produces centers with an improved bound on the clustering cost compared to the previous randomized state-of-the-art algorithm while preserving the $O( d m \log m)$ runtime. Furthermore, our algorithm works even when the predictions are not very accurate, i.e., our cost bound holds for $\alpha$ up to $1/2$, an improvement from $\alpha$ being at most $1/7$ in previous work. For the $k$-medians problem we again improve upon prior work by achieving a biquadratic improvement in the dependence of the approximation factor on the accuracy parameter $\alpha$ to get a cost of $(1+O(\alpha))\mathrm{OPT}$, while requiring essentially just $O(md \log^3 m/\alpha)$ runtime. 
    more » « less