skip to main content


Title: More accurate $$ \sigma \left(\mathcal{GG}\to h\right),\Gamma \left(h\to \mathcal{GG},\mathcal{AA},\overline{\Psi}\Psi \right) $$ and Higgs width results via the geoSMEFT
A<sc>bstract</sc>

We develop Standard Model Effective Field Theory (SMEFT) predictions ofσ($$ \mathcal{GG} $$GGh), Γ(h$$ \mathcal{GG} $$GG), Γ(h$$ \mathcal{AA} $$AA) to incorporate full two loop Standard Model results at the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultaneously report consistent Γ(h$$ \overline{\Psi}\Psi $$Ψ¯Ψ) results including leading QCD corrections and dimension eight SMEFT corrections. This extends the predictions of the former processes Γ, σto a full set of corrections at$$ \mathcal{O}\left({\overline{v}}_T^2/{\varLambda}^2{\left(16{\pi}^2\right)}^2\right) $$Ov¯T2/Λ216π22and$$ \mathcal{O}\left({\overline{v}}_T^4/{\Lambda}^4\right) $$Ov¯T4/Λ4, where$$ {\overline{v}}_T $$v¯Tis the electroweak scale vacuum expectation value and Λ is the cut off scale of the SMEFT. Throughout, cross consistency between the operator and loop expansions is maintained by the use of the geometric SMEFT formalism. For Γ(h$$ \overline{\Psi}\Psi $$Ψ¯Ψ), we include results at$$ \mathcal{O}\left({\overline{v}}_T^2/{\Lambda}^2\left(16{\pi}^2\right)\right) $$Ov¯T2/Λ216π2in the limit where subleadingmΨ→ 0 corrections are neglected. We clarify how gauge invariant SMEFT renormalization counterterms combine with the Standard Model counter terms in higher order SMEFT calculations when the Background Field Method is used. We also update the prediction of the total Higgs width in the SMEFT to consistently include some of these higher order perturbative effects.

 
more » « less
Award ID(s):
2112540
PAR ID:
10546086
Author(s) / Creator(s):
;
Publisher / Repository:
Journal of High Energy Physics
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
1
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc>

    In this paper we exploreppW±(±ν)γto$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$O1/Λ4in the SMEFT expansion. Calculations to this order are necessary to properly capture SMEFT contributions that grow with energy, as the interference between energy-enhanced SMEFT effects at$$ \mathcal{O}\left(1/{\Lambda}^2\right) $$O1/Λ2and the Standard Model is suppressed. We find that there are several dimension eight operators that interfere with the Standard Model and lead to the same energy growth, ~$$ \mathcal{O}\left({E}^4/{\Lambda}^4\right) $$OE4/Λ4, as dimension six squared. While energy-enhanced SMEFT contributions are a main focus, our calculation includes the complete set of$$ \mathcal{O}\left(1/{\Lambda}^4\right) $$O1/Λ4SMEFT effects consistent with U(3)5flavor symmetry. Additionally, we include the decay of theW±→ ℓ±ν, making the calculation actually$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$q¯q±νγ. As such, we are able to study the impact of non-resonant SMEFT operators, such as$$ \left({L}^{\dagger }{\overline{\sigma}}^{\mu }{\tau}^IL\right)\left({Q}^{\dagger }{\overline{\sigma}}^{\nu }{\tau}^IQ\right) $$Lσ¯μτILQσ¯ντIQBμν, which contribute to$$ \overline{q}{q}^{\prime}\to {\ell}^{\pm}\nu \gamma $$q¯q±νγdirectly and not to$$ \overline{q}{q}^{\prime}\to {W}^{\pm}\gamma $$q¯qW±γ. We show several distributions to illustrate the shape differences of the different contributions.

     
    more » « less
  2. A<sc>bstract</sc>

    We report the first measurement of the inclusivee+e$$ b\overline{b} $$bb¯$$ {D}_s^{\pm } $$Ds±Xande+e$$ b\overline{b} $$bb¯→ D0/$$ {\overline{D}}^0 $$D¯0Xcross sections in the energy range from 10.63 to 11.02 GeV. Based on these results, we determineσ(e+e$$ {B}_s^0{\overline{B}}_s^0 $$Bs0B¯s0X) andσ(e+e$$ B\overline{B} $$BB¯X) in the same energy range. We measure the fraction of$$ {B}_s^0 $$Bs0events at Υ(10860) to befs= ($$ {22.0}_{-2.1}^{+2.0} $$22.02.1+2.0)%. We determine also the ratio of the$$ {B}_s^0 $$Bs0inclusive branching fractions$$ \mathcal{B} $$B($$ {B}_s^0 $$Bs0→ D0/$$ {\overline{D}}^0 $$D¯0X)/$$ \mathcal{B} $$B($$ {B}_s^0 $$Bs0$$ {D}_s^{\pm } $$Ds±X) = 0.416 ± 0.018 ± 0.092. The results are obtained using the data collected with the Belle detector at the KEKB asymmetric-energye+ecollider.

     
    more » « less
  3. A<sc>bstract</sc>

    A search for the fully reconstructed$$ {B}_s^0 $$Bs0→ μ+μγdecay is performed at the LHCb experiment using proton-proton collisions at$$ \sqrt{s} $$s= 13 TeV corresponding to an integrated luminosity of 5.4 fb1. No significant signal is found and upper limits on the branching fraction in intervals of the dimuon mass are set$$ {\displaystyle \begin{array}{cc}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[2{m}_{\mu },1.70\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<7.7\times {10}^{-8},&\ m\left({\mu}^{+}{\mu}^{-}\right)\in \left[\textrm{1.70,2.88}\right]\textrm{GeV}/{c}^2,\\ {}\mathcal{B}\left({B}_s^0\to {\mu}^{+}{\mu}^{-}\gamma \right)<4.2\times {10}^{-8},& m\left({\mu}^{+}{\mu}^{-}\right)\in \left[3.92,{m}_{B_s^0}\right]\textrm{GeV}/{c}^2,\end{array}} $$BBs0μ+μγ<4.2×108,mμ+μ2mμ1.70GeV/c2,BBs0μ+μγ<7.7×108,mμ+μ1.70, 2.88GeV/c2,BBs0μ+μγ<4.2×108,mμ+μ3.92mBs0GeV/c2,

    at 95% confidence level. Additionally, upper limits are set on the branching fraction in the [2mμ,1.70] GeV/c2dimuon mass region excluding the contribution from the intermediateϕ(1020) meson, and in the region combining all dimuon-mass intervals.

     
    more » « less
  4. Abstract

    Using proton–proton collision data corresponding to an integrated luminosity of$$140\hbox { fb}^{-1}$$140fb-1collected by the CMS experiment at$$\sqrt{s}= 13\,\text {Te}\hspace{-.08em}\text {V} $$s=13TeV, the$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} $$Λb0J/ψΞ-K+decay is observed for the first time, with a statistical significance exceeding 5 standard deviations. The relative branching fraction, with respect to the$${{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} $$Λb0ψ(2S)Λdecay, is measured to be$$\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{\text {J}/\uppsi }} {{{\Xi }} ^{{-}}} {{\text {K}} ^{{+}}} )/\mathcal {B}({{{\Lambda }} _{\text {b}}^{{0}}} \rightarrow {{{\uppsi }} ({2\textrm{S}})} {{\Lambda }} ) = [3.38\pm 1.02\pm 0.61\pm 0.03]\%$$B(Λb0J/ψΞ-K+)/B(Λb0ψ(2S)Λ)=[3.38±1.02±0.61±0.03]%, where the first uncertainty is statistical, the second is systematic, and the third is related to the uncertainties in$$\mathcal {B}({{{\uppsi }} ({2\textrm{S}})} \rightarrow {{\text {J}/\uppsi }} {{{\uppi }} ^{{+}}} {{{\uppi }} ^{{-}}} )$$B(ψ(2S)J/ψπ+π-)and$$\mathcal {B}({{{\Xi }} ^{{-}}} \rightarrow {{\Lambda }} {{{\uppi }} ^{{-}}} )$$B(Ξ-Λπ-).

     
    more » « less
  5. Abstract

    We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ρ0meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$μ+and$$ \mu ^{-}$$μ-beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$c2$$< W<$$<W<17.0 GeV/$$c^2$$c2, 1.0 (GeV/c)$$^2$$2$$< Q^2<$$<Q2<10.0 (GeV/c)$$^2$$2and 0.01 (GeV/c)$$^2$$2$$< p_{\textrm{T}}^2<$$<pT2<0.5 (GeV/c)$$^2$$2. Here,Wdenotes the mass of the final hadronic system,$$Q^2$$Q2the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$pTthe transverse momentum of the$$\rho ^0$$ρ0meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$γTVL) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ρ0production.

     
    more » « less