skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engineering viral vectors for acoustically targeted gene delivery
Abstract Targeted gene delivery to the brain is a critical tool for neuroscience research and has significant potential to treat human disease. However, the site-specific delivery of common gene vectors such as adeno-associated viruses (AAVs) is typically performed via invasive injections, which limit its applicable scope of research and clinical applications. Alternatively, focused ultrasound blood-brain-barrier opening (FUS-BBBO), performed noninvasively, enables the site-specific entry of AAVs into the brain from systemic circulation. However, when used in conjunction with natural AAV serotypes, this approach has limited transduction efficiency and results in substantial undesirable transduction of peripheral organs. Here, we use high throughput in vivo selection to engineer new AAV vectors specifically designed for local neuronal transduction at the site of FUS-BBBO. The resulting vectors substantially enhance ultrasound-targeted gene delivery and neuronal tropism while reducing peripheral transduction, providing a more than ten-fold improvement in targeting specificity in two tested mouse strains. In addition to enhancing the only known approach to noninvasively target gene delivery to specific brain regions, these results establish the ability of AAV vectors to be evolved for specific physical delivery mechanisms.  more » « less
Award ID(s):
1920364
PAR ID:
10513530
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Delivering genes to and across the brain vasculature efficiently and specifically across species remains a critical challenge for addressing neurological diseases. We have evolved adeno-associated virus (AAV9) capsids into vectors that transduce brain endothelial cells specifically and efficiently following systemic administration in wild-type mice with diverse genetic backgrounds, and in rats. These AAVs also exhibit superior transduction of the CNS across non-human primates (marmosets and rhesus macaques), and in ex vivo human brain slices, although the endothelial tropism is not conserved across species. The capsid modifications translate from AAV9 to other serotypes such as AAV1 and AAV-DJ, enabling serotype switching for sequential AAV administration in mice. We demonstrate that the endothelial-specific mouse capsids can be used to genetically engineer the blood-brain barrier by transforming the mouse brain vasculature into a functional biofactory. We apply this approach to Hevin knockout mice, where AAV-X1-mediated ectopic expression of the synaptogenic protein Sparcl1/Hevin in brain endothelial cells rescued synaptic deficits. 
    more » « less
  2. Amphibians,byvirtueoftheirphylogeneticposition,provideinvaluableinsightsonnervoussystemevolution, development, and remodeling. The genetic toolkit for amphibians, however, remains limited. Recombinant adeno-associated viral vectors (AAVs) are a powerful alternative to transgenesis for labeling and manipulating neurons. Although successful in mammals,AAVshaveneverbeenshowntotransduceamphibiancells efficiently. We screened AAVs in three amphibian species—the frogs Xenopus laevis and Pelophylax bedriagae andthesalamanderPleurodeles waltl—and identified at least two AAV serotypes per speciesthat transduceneurons.Indevelopingamphibians,AAVslabeledgroupsofneuronsgeneratedatthesametimeduring development. In the mature brain, AAVrg retrogradely traced long-range projections. Our study introduces AAVs as a tool for amphibian research, establishes a generalizable workflow for AAV screening in new species, and expands opportunities for cross-species comparisons of nervous system development, function, and evolution. 
    more » « less
  3. Abstract Adeno‐associated viruses (AAVs) have acquired a central role in modern medicine as delivery agents for gene therapies targeting rare diseases. While new AAVs with improved tissue targeting, potency, and safety are being introduced, their biomanufacturing technology is lagging. In particular, the AAV purification pipeline hinges on protein ligands for the affinity‐based capture step. While featuring excellent AAV binding capacity and selectivity, these ligands require strong acid (pH <3) elution conditions, which can compromise the product's activity and stability. Additionally, their high cost and limited lifetime has a significant impact on the price tag of AAV‐based therapies. Seeking to introduce a more robust and affordable affinity technology, this study introduces a cohort of peptide ligands that (i) mimic the biorecognition activity of the AAV receptor (AAVR) and anti‐AAV antibody A20, (ii) enable product elution under near‐physiological conditions (pH 6.0), and (iii) grant extended reusability by withstanding multiple regenerations. A20‐mimetic CYIHFSGYTNYNPSLKSC and AAVR‐mimetic CVIDGSQSTDDDKIC demonstrated excellent capture of serotypes belonging to distinct clones/clades – namely, AAV1, AAV2, AAV5, AAV6, AAV8, and AAV9. This corroborates the in silico models documenting their ability to target regions of the viral capsid that are conserved across all serotypes. CVIDGSQSTDDDKIC‐Toyopearl resin features binding capacity (≈1014vp mL−1) and product yields (≈60%–80%) on par with commercial adsorbents, and purifies AAV2 from HEK293 and Sf9 cell lysates with high recovery (up to 78%), reduction of host cell proteins (up to 700‐fold), and high transduction activity (up to 65%). 
    more » « less
  4. Gene therapies have shown great promise for the potential treatment of a broad range of diseases. Adeno-associated viruses (AAVs) are popular gene vectors because of their ability to target specific tissues, and they have demonstrated high transduction efficiencies in multiple neurological targets. While these therapeutics hold great promise, their biomanufacturing has limited potential cost-reduction and more widespread adoption. Herein, we report the preliminary development of an immunosensor for measuring the titer of adeno-associated virus 2 (AAV2), which may be deployed for rapid quantification of product yield during AAV biomanufacturing. We functionalized an interdigitated electrode array with anti-AAV2 antibodies, and electrochemical impedance spectroscopy was employed to investigate the response to AAV2 titer. A Faradaic sensing principle was utilized, in which the charge transfer resistance (Rct) of an electrochemical reporter was monitored after capture of AAV2 on the surface of the sensor. A linear response was measured over titers 1012 - 1013 capsids/mL. 
    more » « less
  5. Adeno-associated virus (AAV) capsids are among the leading gene delivery platforms used to treat a vast array of human diseases and conditions. AAVs exist in a variety of serotypes due to differences in viral protein (VP) sequences, with distinct serotypes targeting specific cells and tissues. As the utility of AAVs in gene therapy increases, ensuring their specific composition is imperative for correct targeting and gene delivery. From a quality control perspective, current analytical tools are limited in their selectivity for viral protein (VP) subunits due to their sequence similarities, instrumental difficulties in assessing the large molecular weights of intact capsids, and the uncertainty in distinguishing empty and filled capsids. To address these challenges, we combine two distinct analytical workflows that assess the intact capsids and VP subunits separately. First, selective temporal overview of resonant ions (STORI)-based charge detection-mass spectrometry (CD-MS) was applied for characterization of the intact capsids. Liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) separations were then used for capsid denaturing measurements. This multi-method combination was applied to 3 AAV serotypes (AAV2, AAV6, and AAV8) to evaluate their intact empty and filled capsid ratios and then examine the distinct VP sequences and modifications present. 
    more » « less