skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ensemble Kalman Filter Updates Based on Regularized Sparse Inverse Cholesky Factors
Abstract The ensemble Kalman filter (EnKF) is a popular technique for data assimilation in high-dimensional nonlinear state-space models. The EnKF represents distributions of interest by an ensemble, which is a form of dimension reduction that enables straightforward forecasting even for complicated and expensive evolution operators. However, the EnKF update step involves estimation of the forecast covariance matrix based on the (often small) ensemble, which requires regularization. Many existing regularization techniques rely on spatial localization, which may ignore long-range dependence. Instead, our proposed approach assumes a sparse Cholesky factor of the inverse covariance matrix, and the nonzero Cholesky entries are further regularized. The resulting method is highly flexible and computationally scalable. In our numerical experiments, our approach was more accurate and less sensitive to misspecification of tuning parameters than tapering-based localization.  more » « less
Award ID(s):
1934904 1953005 1654083
PAR ID:
10513570
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
149
Issue:
7
ISSN:
0027-0644
Format(s):
Medium: X Size: p. 2231-2238
Size(s):
p. 2231-2238
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Ever since its inception, the ensemble Kalman filter (EnKF) has elicited many heuristic approaches that sought to improve it. One such method is covariance localization, which alleviates spurious correlations due to finite ensemble sizes by using relevant spatial correlation information. Adaptive localization techniques account for how correlations change in time and space, in order to obtain improved covariance estimates. This work develops a Bayesian approach to adaptive Schur-product localization for the deterministic ensemble Kalman filter (DEnKF) and extends it to support multiple radii of influence. We test the proposed adaptive localization using the toy Lorenz'96 problem and a more realistic 1.5-layer quasi-geostrophic model. Results with the toy problem show that the multivariate approach informs us that strongly observed variables can tolerate larger localization radii. The univariate approach leads to markedly improved filter performance for the realistic geophysical model, with a reduction in error by as much as 33 %. 
    more » « less
  2. Abstract Spatial statistics often involves Cholesky decomposition of covariance matrices. To ensure scalability to high dimensions, several recent approximations have assumed a sparse Cholesky factor of the precision matrix. We propose a hierarchical Vecchia approximation, whose conditional-independence assumptions imply sparsity in the Cholesky factors of both the precision and the covariance matrix. This remarkable property is crucial for applications to high-dimensional spatiotemporal filtering. We present a fast and simple algorithm to compute our hierarchical Vecchia approximation, and we provide extensions to nonlinear data assimilation with non-Gaussian data based on the Laplace approximation. In several numerical comparisons, including a filtering analysis of satellite data, our methods strongly outperformed alternative approaches. 
    more » « less
  3. Spatio-temporal filtering is a common and challenging task in many environmental applications, where the evolution is often nonlinear and the dimension of the spatial state may be very high. We propose a scalable filtering approach based on a hierarchical sparse Cholesky representation of the filtering covariance matrix. At each time point, we compress the sparse Cholesky factor into a dense matrix with a small number of columns. After applying the evolution to each of these columns, we decompress to obtain a hierarchical sparse Cholesky factor of the forecast covariance, which can then be updated based on newly available data. We illustrate the Cholesky evolution via an equivalent representation in terms of spatial basis functions. We also demonstrate the advantage of our method in numerical comparisons, including using a high-dimensional and nonlinear Lorenz model. 
    more » « less
  4. Abstract For data assimilation to provide faithful state estimates for dynamical models, specifications of observation uncertainty need to be as accurate as possible. Innovation-based methods based on Desroziers diagnostics, are commonly used to estimate observation uncertainty, but such methods can depend greatly on the prescribed background uncertainty. For ensemble data assimilation, this uncertainty comes from statistics calculated from ensemble forecasts, which require inflation and localization to address under sampling. In this work, we use an ensemble Kalman filter (EnKF) with a low-dimensional Lorenz model to investigate the interplay between the Desroziers method and inflation. Two inflation techniques are used for this purpose: 1) a rigorously tuned fixed multiplicative scheme and 2) an adaptive state-space scheme. We document how inaccuracies in observation uncertainty affect errors in EnKF posteriors and study the combined impacts of misspecified initial observation uncertainty, sampling error, and model error on Desroziers estimates. We find that whether observation uncertainty is over- or underestimated greatly affects the stability of data assimilation and the accuracy of Desroziers estimates and that preference should be given to initial overestimates. Inline estimates of Desroziers tend to remove the dependence between ensemble spread–skill and the initially prescribed observation error. In addition, we find that the inclusion of model error introduces spurious correlations in observation uncertainty estimates. Further, we note that the adaptive inflation scheme is less robust than fixed inflation at mitigating multiple sources of error. Last, sampling error strongly exacerbates existing sources of error and greatly degrades EnKF estimates, which translates into biased Desroziers estimates of observation error covariance. Significance StatementTo generate accurate predictions of various components of the Earth system, numerical models require an accurate specification of state variables at our current time. This step adopts a probabilistic consideration of our current state estimate versus information provided from environmental measurements of the true state. Various strategies exist for estimating uncertainty in observations within this framework, but are sensitive to a host of assumptions, which are investigated in this study. 
    more » « less
  5. We present an ensemble filtering method based on a linear model for the precision matrix (the inverse of the covariance) with the parameters determined by Score Matching Estimation. The method provides a rigorous covariance regularization when the underlying random field is Gaussian Markov. The parameters are found by solving a system of linear equations. The analysis step uses the inverse formulation of the Kalman update. Several filter versions, differing in the construction of the analysis ensemble, are proposed, as well as a Score matching version of the Extended Kalman Filter. 
    more » « less