skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Every Data Point Counts: Stellar Flares as a Case Study of Atmosphere-aided Studies of Transients in the LSST Era
Abstract Due to their short timescale, stellar flares are a challenging target for the most modern synoptic sky surveys. The upcoming Vera C. Rubin Legacy Survey of Space and Time (LSST), a project designed to collect more data than any precursor survey, is unlikely to detect flares with more than one data point in its main survey. We developed a methodology to enable LSST studies of stellar flares, with a focus on flare temperature and temperature evolution, which remain poorly constrained compared to flare morphology. By leveraging the sensitivity expected from the Rubin system, differential chromatic refraction (DCR) can be used to constrain flare temperature from a single-epoch detection, which will enable statistical studies of flare temperatures and constrain models of the physical processes behind flare emission using the unprecedentedly high volume of data produced by Rubin over the 10 yr LSST. We model the refraction effect as a function of the atmospheric column density, photometric filter, and temperature of the flare, and show that flare temperatures at or above ∼4000 K can be constrained by a singleg-band observation at air massX≳ 1.2, given the minimum specified requirement on the single-visit relative astrometric accuracy of LSST, and that a surprisingly large number of LSST observations are in fact likely be conducted atX≳ 1.2, in spite of image quality requirements pushing the survey to preferentially lowX. Having failed to measure flare DCR in LSST precursor surveys, we make recommendations on survey design and data products that enable these studies in LSST and other future surveys.  more » « less
Award ID(s):
2308016
PAR ID:
10513575
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
272
Issue:
2
ISSN:
0067-0049
Format(s):
Medium: X Size: Article No. 41
Size(s):
Article No. 41
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present light curves and flares from a 7 day, multiwavelength observational campaign of AU Mic, a young and active dM1e star with exoplanets and a debris disk. We report on 73 unique flares between the X-ray to optical data. We use high-time-resolution near-UV (NUV) photometry and soft X-ray (SXR) data from the X-ray Multi-Mirror Mission to study the empirical Neupert effect, which correlates the gradual and impulsive phase flaring emissions. We find that 65% (30 of 46) flares do not follow the Neupert effect, which is 3 times more excursions than seen in solar flares, and propose a four-part Neupert effect classification (Neupert, quasi-Neupert, non-Neupert types I and II) to explain the multiwavelength responses. While the SXR emission generally lags behind the NUV as expected from the chromospheric evaporation flare models, the Neupert effect is more prevalent in larger, more impulsive flares. Preliminary flaring rate analysis with X-ray andU-band data suggests that previously estimated energy ratios hold for a collection of flares observed over the same time period, but not necessarily for an individual, multiwavelength flare. These results imply that one model cannot explain all stellar flares and care should be taken when extrapolating between wavelength regimes. Future work will expand wavelength coverage using radio data to constrain the nonthermal empirical and theoretical Neupert effects to better refine models and bridge the gap between stellar and solar flare physics. 
    more » « less
  2. Abstract Differential Chromatic Refraction (DCR) is caused by the wavelength dependence of our atmosphere’s refractive index, which shifts the apparent positions of stars and galaxies and distorts their shapes depending on their spectral energy distributions. While this effect is typically mitigated and corrected for in imaging observations, we investigate how DCR can instead be used to our advantage to infer the redshifts of supernovae from multiband, time-series imaging data. We simulate Type Ia supernovae in the proposed Vera C. Rubin Observatory Legacy Survey of Space and Time Deep Drilling Field, and evaluate astrometric redshifts. We find that the redshift accuracy improves dramatically with the statistical quality of the astrometric measurements as well as with the accuracy of the astrometric solution. For a conservative choice of a 5 mas systematic uncertainty floor, we find that our redshift estimation is accurate atz< 0.6. We then combine our astrometric redshifts with both host-galaxy photometric redshifts and supernovae photometric (light-curve) redshifts and show that this considerably improves the overall redshift estimates. These astrometric redshifts will be valuable, especially since Rubin will discover a vast number of supernovae for which we will not be able to obtain spectroscopic redshifts. 
    more » « less
  3. Abstract Stellar flares occasionally present apeak-bumplight-curve morphology, consisting of an initial impulsive phase followed by a gradual late phase. Analyzing this specific morphology can uncover the underlying physics of stellar flare dynamics, particularly the plasma heating–evaporation–condensation process. While previous studies have mainly examined peak-bump occurrences on M dwarfs, this report extends the investigation to G-, K-, and M-type stars. We utilize the flare catalog published by J. Crowley et al., encompassing 12,597 flares, detected by using Transiting Exoplanet Survey Satellite (TESS) observations. Our analysis identifies 10,142 flares with discernible classical and complex morphology, of which 197 (∼1.9%) exhibit the peak-bump feature. We delve into the statistical properties of these TESS late-phase flares, noting that both the amplitude and FWHM durations of both the peaks and bumps show positive correlations across all source-star spectral types, following a power law with indices 0.69 ± 0.09 and 1.0 ± 0.15, respectively. Additionally, a negative correlation between the flare amplitude and the effective temperature of their host stars is observed. Compared to the other flares in our sample, peak-bump flares tend to have larger and longer initial peak amplitudes and FWHM durations and possess energies ranging from 1031to 1036erg. 
    more » « less
  4. Abstract We present the Local Volume Complete Cluster Survey (LoVoCCS; we pronounce it as “low-vox” or “law-vox,” with stress on the second syllable), an NSF’s National Optical-Infrared Astronomy Research Laboratory survey program that uses the Dark Energy Camera to map the dark matter distribution and galaxy population in 107 nearby (0.03 <z< 0.12) X-ray luminous ([0.1–2.4 keV]LX500> 1044erg s−1) galaxy clusters that are not obscured by the Milky Way. The survey will reach Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) Year 1–2 depth (for galaxiesr= 24.5,i= 24.0, signal-to-noise ratio (S/N) > 20;u= 24.7,g= 25.3,z= 23.8, S/N > 10) and conclude in ∼2023 (coincident with the beginning of LSST science operations), and will serve as a zeroth-year template for LSST transient studies. We process the data using the LSST Science Pipelines that include state-of-the-art algorithms and analyze the results using our own pipelines, and therefore the catalogs and analysis tools will be compatible with the LSST. We demonstrate the use and performance of our pipeline using three X-ray luminous and observation-time complete LoVoCCS clusters: A3911, A3921, and A85. A3911 and A3921 have not been well studied previously by weak lensing, and we obtain similar lensing analysis results for A85 to previous studies. (We mainly use A3911 to show our pipeline and give more examples in the Appendix.) 
    more » « less
  5. Abstract The Vera C. Rubin Legacy Survey of Space and Time (LSST) holds the potential to revolutionize time domain astrophysics, reaching completely unexplored areas of the Universe and mapping variability time scales from minutes to a decade. To prepare to maximize the potential of the Rubin LSST data for the exploration of the transient and variable Universe, one of the four pillars of Rubin LSST science, the Transient and Variable Stars Science Collaboration, one of the eight Rubin LSST Science Collaborations, has identified research areas of interest and requirements, and paths to enable them. While our roadmap is ever-evolving, this document represents a snapshot of our plans and preparatory work in the final years and months leading up to the survey’s first light. 
    more » « less