Abstract The Surface Enhancement of the IceTop air-shower array will include the addition of radio antennas and scintillator panels, co-located with the existing ice-Cherenkov tanks and covering an area of about 1 km 2 . Together, these will increase the sensitivity of the IceCube Neutrino Observatory to the electromagnetic and muonic components of cosmic-ray-induced air showers at the South Pole. The inclusion of the radio technique necessitates an expanded set of simulation and analysis tools to explore the radio-frequency emission from air showers in the 70 MHz to 350 MHz band. In this paper we describe the software modules that have been developed to work with time- and frequency-domain information within IceCube's existing software framework, IceTray, which is used by the entire IceCube collaboration. The software includes a method by which air-shower simulation, generated using CoREAS, can be reused via waveform interpolation, thus overcoming a significant computational hurdle in the field.
more »
« less
New IceTop trigger in the context of the planned IceCube surface detector enhancement at the South Pole
IceTop is the square kilometer surface array for cosmic-ray air showers of the IceCube Neutrino Observatory at the South Pole. IceTop consists of 81 stations, each comprised of a pair of ice-Cherenkov tanks, which over the years loses sensitivity due to snow coverage. This motivated the plan to enhance IceTop by the deployment of elevated scintillation panels and radio antennas. Coincident detection of an air shower with the IceTop tanks, the scintillators, and the antennas will increase the measurement accuracy of the cosmic-ray properties. While the radio antennas of the enhancement have a higher sensitivity to inclined showers, the current IceTop trigger, requiring coincident hits of both tanks of a station, loses efficiency for such showers. Therefore, we studied the feasibility of adding a trigger based on the multiplicity of single tank hits and studied its performance with simulations and data including a one-day test run at the South Pole. In this paper, we present the plans for the surface enhancement and the studies for the new IceTop trigger.
more »
« less
- PAR ID:
- 10513705
- Publisher / Repository:
- IOPSCIENCE
- Date Published:
- Journal Name:
- Journal of Instrumentation
- Volume:
- 19
- ISSN:
- 1748-0221
- Page Range / eLocation ID:
- C01031
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Capone, A.; De Vincenzi, M.; Morselli, A. (Ed.)The IceCube Neutrino Observatory located at the geographic South Pole is composed of two detectors. One is the in-ice optical array, which measures high-energy muons from air showers and charged particles produced by the interaction of high-energy neutrinos in the ice. The other is an array of ice-Cherenkov tanks at the surface, called IceTop, which is used both as veto for the in-ice neutrino measurements and for detecting cosmic-ray air showers. In the next decade, the IceCube-Gen2 extension will increase the surface coverage including surface radio antennas and scintillator panels on the footprint of an extended optical array in the ice. The combination of the current surface and in-ice detectors can be exploited for the study of cosmic rays and the search for PeV gamma rays. The in-ice detector measures the high-energy muonic component of air showers, whereas the signal in IceTop is dominated by the electromagnetic component. The relative size of the muonic and electromagnetic components is different for gamma-and hadron-induced air showers. Thus, the gamma-hadron separation of cosmic rays is attempted using machine learning techniques including deep learning. Here, different approaches are presented. Finally, the prospects for the detection of PeV photons with IceCube-Gen2 will be discussed.more » « less
-
The IceCube Neutrino Observatory at the geographic South Pole, with its surface array IceTop, detects three different components of extensive air showers: the total signal at the surface, low energy muons on the periphery of the showers, and high energy muons in the deep In Ice array of IceCube. These measurements enable determination of the energy spectrum and composition of cosmic rays from PeV to EeV energies, the anisotropy in the distribution of cosmic ray arrival directions, the muon density of cosmic ray air showers, and the PeV gamma-ray flux. Furthermore, IceTop can be used as a veto for the neutrino measurements. The latest results from these IceTop analyses will be presented along with future plans.more » « less
-
A surface array of radio antennas will enhance the performance of the IceTop array and enable new, complementary science goals. First, the accuracy for cosmic-ray air showers will be increased since the radio array provides a calorimetric measurement of the electromagnetic component and is sensitive to the position of the shower maximum. This enhanced accuracy can be used to better measure the mass composition, to search for possible mass-dependent anisotropies in the arrival directions of cosmic rays, and for more thorough tests of hadronic interaction models. Second, the sensitivity of the radio array to inclined showers will increase the sky coverage for cosmic-ray measurements. Third, the radio array can be used to search for PeV photons from the Galactic Center. Since IceTop is planned to be enhanced by a scintillator array in the near future, a radio extension sharing the same infrastructure can be installed with minimal additional effort and excellent scientific prospects. The combination of ice-Cherenkov, scintillation, and radio detectors at IceCube will provide unprecedented accuracy for the study of highenergy Galactic cosmic rays.more » « less
-
IceCube is a cubic-kilometer Cherenkov detector in the deep ice at the geographic South Pole. The dominant event yield in the deep ice detector consists of penetrating atmospheric muons with energies above approximately 300 GeV, produced in cosmic ray air showers. In addition, the surface array, IceTop, measures the electromagnetic component and GeV muons of air showers. Hence, IceCube and IceTop yield unique opportunities to study cosmic rays with unprecedented statistics in great detail. We will present recent results of comic ray measurements from IceCube and IceTop. In this overview, we will highlight measurements of the energy spectrum of cosmic rays from 250 TeV up to the EeV range and their mass composition above 3 PeV. We will also report recent results from measurements of the muon content in air showers and discuss their consistency with predictions from current hadronic interaction models.more » « less