skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Consequences of arthropod community structure for an at-risk insectivorous bird
Global declines in bird and arthropod abundance highlights the importance of understanding the role of food limitation and arthropod community composition for the performance of insectivorous birds. In this study, we link data on nestling diet, arthropod availability and nesting performance for the Coastal Cactus Wren (Campylorhynchus brunneicapillus sandiegensis), an at-risk insectivorous bird native to coastal southern California and Baja Mexico. We used DNA metabarcoding to characterize nestling diets and monitored 8 bird territories over two years to assess the relationship between arthropod and vegetation community composition and bird reproductive success. We document a discordance between consumed prey and arthropod biomass within nesting territories, in which Diptera and Lepidoptera were the most frequently consumed prey taxa but were relatively rare in the environment. In contrast other Orders (e.g., Hemiptera, Hymenoptera)were abundant in the environment but were absent from nestling diets. Accordingly, variation in bird reproductive success among territories was positively related to the relative abundance of Lepidoptera (but not Diptera), which were most abundant on 2 shrub species (Eriogonum fasciculatum,Sambucus nigra)of the 9 habitat elements characterized (8 dominant plant species and bare ground). Bird reproductive success was in turn negatively related to two invasive arthropods whose abundance was not associated with preferred bird prey, but instead possibly acted through harassment (Linepithema humile; Argentine ants) and parasite transmission or low nutritional quality (Armadillidium vulgare; pill-bug). These results demonstrate how multiple aspects of arthropod community structure can influence bird performance through complementary mechanisms, and the importance of managing for arthropods in bird conservation efforts.  more » « less
Award ID(s):
2032435
PAR ID:
10513779
Author(s) / Creator(s):
; ; ; ; ; ; ;
Editor(s):
Yue, Bi-Song
Publisher / Repository:
PLoS One
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
2
ISSN:
1932-6203
Page Range / eLocation ID:
e0281081
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atkinson, Phil (Ed.)
    Shade coffee is a well-studied cultivation strategy that creates habitat for tropical birds while also maintaining agricultural yield. Although there is a general consensus that shade coffee is more “bird-friendly” than a sun coffee monoculture, little work has investigated the effects of specific shade tree species on insectivorous bird diversity. This study involved avian foraging observations, mist netting data, temperature loggers, and arthropod sampling to investigate bottom-up effects of two shade tree taxa - native Cordia sp. and introduced Grevillea robusta - on insectivorous bird communities in central Kenya. Results indicate that foliage-dwelling arthropod abundance, and the richness and overall abundance of foraging birds were all higher on Cordia than on Grevillea. Furthermore, multivariate analyses of the bird community indicate a significant difference in community composition between the canopies of the two tree species, though the communities of birds using the coffee understory under these shade trees were similar. In addition, both shade trees buffered temperatures in coffee, and temperatures under Cordia were marginally cooler than under Grevillea. These results suggest that native Cordia trees on East African shade coffee farms may be better at mitigating habitat loss and attracting insectivorous birds that could promote ecosystem services. Identifying differences in prey abundance and preferences in bird foraging behavior not only fills basic gaps in our understanding of the ecology of East African coffee farms, it also aids in developing region-specific information to optimize functional diversity, ecosystem services, and the conservation of birds in agricultural landscapes. 
    more » « less
  2. Podostemaceae are a unique family of aquatic angiosperms found in river rapids and waterfalls throughout southern Asia, Africa, and the Americas. Podostemaceae are understudied, and consequently, the arthropods associated with these plants are not well known. We sought to expand knowledge of arthropod-Podostemaceae associations to better understand the impact of these plants on aquatic ecosystems and biodiversity. We examined samples of Podostemaceae collected between 1998 and 2007 from Brazil, Costa Rica, Suriname, and Venezuela for arthropods even though these samples were not collected with the intent to investigate arthropod-Podostemaceae associations. We examined 15 samples of Podostemaceae, including 10 species never evaluated for arthropod associations, and found over 9000 arthropods representing 12 different orders. The most abundant orders were Diptera (77.88%), Trichoptera (12.90%), Coleoptera (3.35%), and Lepidoptera (2.42%). We found several arthropods not previously reported from Podostemaceae, including Collembola and Acari, documented several instances of insects boring into plant tissues, and provide the first report of an insect-induced gall on Ceratolacis pedunculatum C.T. Philbrick, Novelo & Irgang. 
    more » « less
  3. Abstract Changes in leaf phenology from warming spring and autumn temperatures have lengthened the temperate zone growing “green” season and breeding window for migratory birds in North America. However, the fitness benefits of an extended breeding season will depend, in part, on whether species have sufficient dietary flexibility to accommodate seasonal changes in prey availability. We used fecal DNA metabarcoding to test the hypothesis that seasonal changes in the diets of the insectivorous, migratory black‐throated blue warbler (Setophaga caerulescens) track changes in the availability of arthropod prey at the Hubbard Brook Experimental Forest, New Hampshire, USA. We examined changes across the breeding season and along an elevation gradient encompassing a 2‐week difference in green season length. From 98 fecal samples, we identified 395 taxa from 17 arthropod orders; 242 were identified to species, withCecrita guttivitta(saddled prominent moth),Theridion frondeum(eastern long‐legged cobweaver), andPhilodromus rufus(white‐striped running crab spider) occurring at the highest frequency. We found significant differences in diet composition between survey periods and weak differences among elevation zones. Variance in diet composition was highest late in the season, and diet richness and diversity were highest early in the season. Diet composition was associated with changes in prey availability surveyed over the green season. However, several taxa occurred in diets more or less than expected relative to their frequency of occurrence from survey data, suggesting that prey selection or avoidance sometimes accompanies opportunistic foraging. This study demonstrates that black‐throated blue warblers exhibit diet flexibility and track seasonal changes in prey availability, which has implications for migratory bird responses to climate‐induced changes in insect communities with longer green seasons. 
    more » « less
  4. Abstract Insectivorous vertebrates, especially on islands, can exert top‐down control on herbivorous prey, which can transfer through a food chain to reduce herbivory. However, in many systems insectivorous vertebrates feed on more than one trophic level, especially consuming arthropod predators, and this intraguild predation can diminish trophic cascades. Our goal was to determine, using an exclosure experiment, the relative importance of anole lizards and coqui frogs in controlling spider and arthropod abundances as well as herbivory rates in the understory of the Luquillo Experimental Forest, Puerto Rico. We found that exclosures removing both anoles and coquis doubled spider abundance compared to exclosures with anoles and coquis at natural densities. The effect of coquis on spiders was greater and occurred more quickly than that of anoles, potentially because of the higher natural densities of coquis and removal of both vertebrates produced no interactive effects. We found support for the idea that anoles, but not coquis, reduce foliar arthropod abundances on one of the two studied plant species. However, there was also evidence that anole removal decreased herbivory, the opposite of what we would expect if there was a trophic cascade. Potential explanations include that anoles reduced predatory arthropods on foliage more than they reduced herbivorous arthropods. Results highlight that the food web in tabonuco forest is not simple and that there are complex and dynamic relationships among vertebrate insectivores, predatory arthropods, and herbivorous arthropods that do not consistently result in a trophic cascade. Abstract in Spanish is available with online material 
    more » « less
  5. Ecological niches are pivotal in addressing questions of species richness gradients like the Latitudinal Diversity Gradient (LDG). The Hutchinsonian niche hypervolume model and derivatives are some of the most proven tools. Accordingly, species occupy mathematically convenient spaces in relation to functional, especially trophic, relationships, as well as the physical environment. In one application, the number of species in a community is a function of average niche sizes, overlaps, and total niche volume. Alternatively, the number of coexisting species derives from invasibility criteria in relation to species-interaction modules. The daunting complexity of tropical communities begs the question of how well these ecologically inspired paradigms accommodate present knowledge of species interactions and functional relationships. Recent studies of hyperdiverse tropical insectivorous bird species suggests reevaluating the applicability of such concepts. Here I review Neotropical, arthropod-feeding bird species interactions needed to explain these species’ trophic relationships, including their diets, feeding substrates, and behavioral and morphological traits relevant to resource acquisition. Important emergent generalizations include extraordinary specializations on both prey resource locations (substrates) and behaviors, rather than on particular resourcesper se, and a preponderance of adaptations to exploit the anti-predator traits of prey, traits evolved in response to other predators. These specializations and implicit arms races necessitate evolutionary approaches to niches necessary to understand the relevant natural history and ecology, how these species compete interspecifically, and even how these predator species interact with preyviaevolutionary enhancements. These findings, compared and contrasted with prevailing concepts and findings, suggest expanding niche concepts to accommodate both the large temporal and regional geographic scales to understand the accumulated species richness of the mainland Neotropics. These trophic specializations also highlight why many of these birds are so sensitive to human disturbances, especially habitat loss, fragmentation, and degradation. 
    more » « less