skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating the Role of Titanomagnetite in Bubble Nucleation: Rock Magnetic Detection and Characterization of Nanolites and Ultra‐Nanolites in Rhyolite Pumice and Obsidian From Glass Mountain, California (Dataset)
This dataset archived with the Magnetics Information Consortium contains rock-magnetic data for rhyolitic pumice and obsidian from Glass Mountain, Medicine Lake, California, USA. Data were generated at Montclair State University and include magnetic susceptibility measured at 976Hz and 3904Hz, magnetic susceptibility vs. temperature, anhysteretic remanent magnetization (ARM), and magnetic hysteresis measurements. This dataset accompanies the publication Brachfeld, S., McCartney, K., Hammer, J.E., Shea, T., Giachetti, T., Evaluating the role of titanomagnetite in bubble nucleation: Rock magnetic detection and characterization of nanolites and ultra-nanolites in rhyolite pumice and obsidian from Glass Mountain, California, Geochemistry Geophysics Geosystems, https://doi.org/10.1029/2023GC011336.  more » « less
Award ID(s):
1839313
PAR ID:
10513798
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Earthref Magnetics Information Consortium
Date Published:
Subject(s) / Keyword(s):
Rhyolite Obsidian Glass Mountain Titanomagnetite Nanolites Magnetic Susceptibility Bubble Nucleation anhysteretic remananent magnetization hysteresis parameters
Format(s):
Medium: X
Location:
earthref.org/MagIC/20020
Institution:
Montclair State University
Sponsoring Org:
National Science Foundation
More Like this
  1. We document the presence, composition, and number density (TND) of titanomagnetite nanolites and ultra‐nanolites in aphyric rhyolitic pumice, obsidian, and vesicular obsidian from the 1060 CE Glass Mountain volcanic eruption of Medicine Lake Volcano, California, using magnetic methods. Curie temperatures indicate compositions of Fe2.40Ti0.60O4 to Fe3O4. Rock‐magnetic parameters sensitive to domain state, which is dependent on grain volume, indicate a range of particle sizes spanning superparamagnetic (<50–80 nm) to multidomain (>10 μm) particles. Cylindrical cores drilled from the centers of individual pumice clasts display anisotropy of magnetic susceptibility with prolate fabrics, with the highest degree of anisotropy coinciding with the highest vesicularity. Fabrics within a pumice clast require particle alignment within a fluid, and are interpreted to result from the upward transport of magma driven by vesiculation, ensuing bubble growth, and shearing in the conduit. Titanomagnetite number density (TND) is calculated from titanomagnetite volume fraction, which is determined from ferromagnetic susceptibility. TND estimates for monospecific assemblages of 1,000 nm–10 nm cubes predict 10^12 to 10^20 m^−3 of solid material, respectively. TND estimates derived using a power law distribution of grain sizes predict 10^18 to 10^19  m^−3. These ranges agree well with TND determinations of 10^18 to 10^20  m^−3 made by McCartney et al. (2024), and are several orders of magnitude larger than the number density of bubbles in these materials. These observations are consistent with the hypothesis that titanomagnetite crystals already existed in extremely high number‐abundance at the time of magma ascent and bubble nucleation. 
    more » « less
  2. Nucleation of H2O vapor bubbles in magma requires surpassing a chemical supersaturation threshold via decompression. The threshold is minimized in the presence of a nucleation substrate (heterogeneous nucleation, <50 MPa), and maximized when no nucleation substrate is present (homogeneous nucleation, >100 MPa). The existence of explosively erupted aphyric rhyolite magma staged from shallow (<100 MPa) depths represents an apparent paradox that hints at the presence of a cryptic nucleation substrate. In a pair of studies focusing on Glass Mountain eruptive units from Medicine Lake, California, we characterize titanomagnetite nanolites and ultrananolites in pumice, obsidian, and vesicular obsidian (Brachfeld et al., 2024,https://doi.org/10.1029/2023GC011336), calculate titanomagnetite crystal number densities, and compare titanomagnetite abundance with the physical properties of pumice to evaluate hypotheses on the timing of titanomagnetite crystallization. Titanomagnetite crystals with grain sizes of approximately 3–33 nm are identified in pumice samples from the thermal unblocking of low‐temperature thermoremanent magnetization. The titanomagnetite number densities for pumice are 10^18 to 10^20 m^−3, comparable to number densities in pumice and obsidian obtained from room temperature methods (Brachfeld et al., 2024,https://doi.org/10.1029/2023GC011336'>https://doi.org/10.1029/2023GC011336). This range exceeds reported bubble number densities (BND) within the pumice from the same eruptive units (average BND ∼4 × 10^14 m^−3). The similar abundances of nm‐scale titanomagnetite crystals in the effusive and explosive products of the same eruption, together with the lack of correlation between pumice permeability and titanomagnetite content, are consistent with titanomagnetite formation having preceded the bubble formation. Results suggest sub‐micron titanomagnetite crystals are responsible for heterogeneous bubble nucleation in this nominally aphyric rhyolite magma. 
    more » « less
  3. Abstract High‐temperature Raman spectroscopy offers a cost‐effective alternative to extensive infrastructure and sensitive instrumentation for investigating nanolite crystallization in undercooled volcanic melts, a key area of interest in volcanology. This study examined nanolite formation in anhydrous andesite melts in situ at high temperatures, identifying distinct Raman peaks at 310 and 670 cm−1appearing above the glass transition temperature. The initial amorphous glass remained stable up to 655°C, beyond which Fe‐Ti‐oxide nanolites progressively formed at higher temperatures, as also confirmed by complementary XRD analysis. The evolution of the 310 cm−1peak depends only on the magnitude of nanolite crystallization, while the intensity of the 670 cm−1peak is temperature‐dependent and challenging to observe above 500°C. Complementary low‐temperature rock‐magnetic analyses confirmed Fe‐Ti‐oxide nanocrystallization with nanolites around 20 nm in diameter. The study tested lasers of different wavelengths (from 355 to 514 nm) and found the green laser to be the most effective for collecting spectra at both room and high temperature. However, above 720°C, black body radiation significantly hinders Raman observation with the green laser when using a non‐confocal setup and analyzing poorly transparent samples. If higher temperature measurements are desired, switching to a confocal setup and using lower wavelength lasers should be considered. This research offers a protocol for studying nanolite formation and melt dynamics at high temperatures, providing a foundation for future studies of volcanic processes. 
    more » « less
  4. This dataset archived with the Earthref Magnetics Information Consortium contains low-temperature remanent magnetization data generated at the Institute for Rock Magnetism, University of Minnesota. This dataset accompanies the publication McCartney, K., Hammer, J.E., Shea, T., Brachfeld, S., Giachetti, T., 2024. Investigating the role of nanoscale titanomagnetite in bubble nucleation via novel applications of magnetic analyses (Dataset), Magnetics Information Consortium (MagIC), doi:10.7288/V4/MAGIC/20019. 
    more » « less
  5. Paleomagnetic, rock magnetic, or geomagnetic data found in the MagIC data repository from a paper titled: Flow directions in dikes from anisotropy of magnetic susceptibility data: The bootstrap way 
    more » « less