skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Malta’s Water Scarcity Challenges: Past, Present, and Future Mitigation Strategies for Sustainable Water Supplies
The small Mediterranean country of Malta, an island located between Italy and North Africa, has been facing and will continue to face water stress and scarcity in the coming years, receiving the designation as the most water stressed country in Europe. In the past, Malta’s water challenges were centered around water quantity concerns, but in more recent years, the severity of their water stress has been strengthened by the deterioration of the groundwater quality and quantity. Through the over-extraction of their groundwater, saltwater intrusion has steadily occurred into their freshwater aquifer systems, worsening their groundwater quality for both domestic and agricultural purposes. The objective of this paper is to conduct an extensive review on the history of Malta’s water problems and how Malta is working to combat its water scarcity concerns. Additionally, this paper investigates the impact of Malta’s water scarcity on its food and energy security challenges. Our study concludes that while Malta has obstacles to overcome in their pursuit of water security and sustainable development, the future remains hopeful, with several alternatives still available. Some of the alternatives explored in this review include wastewater reuse, increased awareness, use of alternative energy sources, rainwater harvesting, and implementation of nation-wide strategic water policies.  more » « less
Award ID(s):
1828942
PAR ID:
10273061
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Sustainability
Volume:
12
Issue:
23
ISSN:
2071-1050
Page Range / eLocation ID:
9835
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Most stored groundwater is ‘fossil’ in its age, having been under the ground for more than ~12 thousand years. Mapping where wells tap fossil aquifers is relevant for water quality and quantity management. Nevertheless, the prevalence of wells that tap fossil aquifers is not known. Here we show that wells that are sufficiently deep to tap fossil aquifers are widespread, though they remain outnumbered by shallower wells in most areas. Moreover, the proportion of newly drilled wells that are deep enough to tap fossil aquifers has increased over recent decades. However, this widespread and increased drilling of wells into fossil aquifers is not necessarily associated with groundwater depletion, emphasizing that the presence of fossil groundwater does not necessarily indicate a non-renewable water supply. Our results highlight the importance of safeguarding fossil groundwater quality and quantity to meet present and future water demands. 
    more » « less
  2. Virtual water describes water embedded in the production of goods and offers meaningful insights about the complex interplay between water, trade, and sustainability. In this Review, we examine the trends, major players, traded products, and key drivers of virtual water trade (VWT). Roughly 20% of water used in global food production is traded virtually rather than domestically consumed. As such, agriculture dominates VWT, with livestock products, wheat, maize, soybean, oil palm, coffee, and cocoa contributing over 70% of total VWT. These products are also driving VWT growth, the volume of which has increased 2.9 times from 1986 to 2022. However, the countries leading VWT contributions (with China, the United States, the Netherlands, Germany, and India, accounting for 34% of the global VWT in 2022) have remained relatively stable over time, albeit with China becoming an increasingly important importer. VWT can mitigate the effects of water scarcity and food insecurity, although there are concerns about the disconnect between consumers and the environmental impacts of their choices, and unsustainable resource exploitation. Indeed, approximately 16% of unsustainable water use and 11% of global groundwater depletion are virtually traded. Future VWT analyses must consider factors such as water renewability, water quality, climate change impacts, and socio-economic implications. 
    more » « less
  3. Driven by the need for integrated management of groundwater (GW) and surface water (SW), quantification of GW–SW interactions and associated contaminant transport has become increasingly important. This is due to their substantial impact on water quantity and quality. In this review, we provide an overview of the methods developed over the past several decades to investigate GW–SW interactions. These methods include geophysical, hydrometric, and tracer techniques, as well as various modeling approaches. Different methods reveal valuable information on GW–SW interactions at different scales with their respective advantages and limitations. Interpreting data from these techniques can be challenging due to factors like scale effects, heterogeneous hydrogeological conditions, sediment variability, and complex spatiotemporal connections between GW and SW. To facilitate the selection of appropriate methods for specific sites, we discuss the strengths, weaknesses, and challenges of each technique, and we offer perspectives on knowledge gaps in the current science. 
    more » « less
  4. Groundwater historically has been a critical but understudied, underfunded, and underappreciated natural resource, although recent challenges associated with both groundwater quantity and quality have raised its profile. This is particularly true in the Laurentian Great Lakes (LGL) region, where the rich abundance of surface water results in the perception of an unlimited water supply but limited attention on groundwater resources. As a consequence, groundwater management recommendations in the LGL have been severely constrained by our lack of information. To address this information gap, a virtual summit was held in June 2021 that included invited participants from local, state, and federal government entities, universities, non-governmental organizations, and private firms in the region. Both technical (e.g., hydrologists, geologists, ecologists) and policy experts were included, and participants were assigned to an agricultural, urban, or coastal wetland breakout group in advance, based on their expertise. The overall goals of this groundwater summit were fourfold: (1) inventory the key (grand) challenges facing groundwater in Michigan; (2) identify the knowledge gaps and scientific needs, as well as policy recommendations, associated with these challenges; (3) construct a set of conceptual models that elucidate these challenges; and (4) develop a list of (tractable) next steps that can be taken to address these challenges. Absent this type of information, the sustainability of this critical resource is imperiled. 
    more » « less
  5. null (Ed.)
    Massive data center (DC) energy demands lead to water consumption concerns. This study quantifies on-site and off-site DC water consumption and its holistic impact on regional water availability. This study proposes a new DC sustainability metrics, Water Scarcity Usage Effectiveness (WSUE), that captures the holistic impacts of water consumption on regional water availability by considering electricity and water source locations and their associated water scarcity. We examine the water consumption of various DC cooling systems by tracking on-site water consumption along with the direct and indirect water transfers associated with electricity transmission at the contiguous U.S. balancing authority (BA) level. This study then applies the WSUE metric for different DC cooling systems and locations to compare the holistic water stress impact by large on-site water consuming systems (e.g., via cooling towers) versus systems with higher electrical consumption and lower on-site water consumption such as the conventional use of computer room air conditioner (CRAC) units. Results suggest that WSUE is strongly dependent on location, and a water-intensive cooling solution could result in a lower WSUE than a solution requiring no or less on-site water consumption. The use of the WSUE metric aids in DC siting decisions and DC cooling system design from a sustainability point of view. 
    more » « less