skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Metastable structures of cation vacancies in semiconducting oxides
The observed metastable characteristics of cation vacancies in Ga2O3 have prompted a wider search for such systems. In this Perspective, we consider a number of defect systems as candidates for metastability. Some of these are already known to have this property, while for others, this suggestion is new. The examples discussed here are but a sampling of a huge number of systems, and these are used to emphasize that the metastability of defect structures is both common and important; it may yield (for example) split vacancy equilibrium configurations and, hence, should be considered in developing defect models and in analyzing their properties.  more » « less
Award ID(s):
1901563
PAR ID:
10514093
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AIP Publishing
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
135
Issue:
17
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large-scale software exhibits periods of increased defect discovery when blocks of less thoroughly tested code are introduced into an existing codebase. For example, the mission systems schedule of software intensive government acquisition programs includes multiple overlapping software blocks associated with various capabilities. Software reliability researchers have proposed changepoint models to characterize periods of increased defect discovery. However, these models attempt to identify the location of these changepoints after testing has been performed, which is counter-intuitive because conscious decisions such as testing new functionality drive software changepoints. Existing changepoint models are therefore difficult to employ in a predictive manner. To overcome this limitation, this paper proposes a covariate software defect discovery model capable of explaining changepoints in terms of common software testing activities and metrics such as software size estimation, code coverage, and defect density. The proposed and past changepoint models are compared with respect to their predictive accuracy and computational efficiency. Our results indicate that the proposed approach is more computationally efficient and enables accurate prediction of the time needed to achieve a desired defect discovery intensity or mean time to failure despite the occurrence of changepoints during software testing. 
    more » « less
  2. Laser powder bed fusion (LPBF) is an additive manufacturing process that has gained interest for its material fabrication due to multiple advantages, such as the ability to print parts with small feature sizes, good mechanical properties, reduced material waste, etc. However, variations in the key process parameters in LPBF may result in the instantiation of porosity defects and variation in build rate. Particularly, volumetric energy density (VED) is a variable that encapsulates a number of those parameters and represents the amount of energy input from the laser source to the feedstock. VED has been traditionally used to inform the quality of the printed part but different values of VED are presented as optimal values for certain material systems. An optimal VED value can be maintained by changing the key process parameters so that various combinations yield a constant value. In this study, an optimal constant VED value is maintained while printing SS316L with variable key processing parameters. Porosity analysis is performed using optical microscopy, as well as X-ray computed tomography, to reveal the volume density and distribution of those pores. Two primary defect categories are identified, namely lack of fusion and porosity induced by balling defects. The findings indicate that, even at optimal VED, variations in process parameters can significantly influence defect type, underscoring the sensitivity of defect formation to the variation of these parameters. Furthermore, a minor change in the build rate, driven by adjustments in process parameters, was found to influence defect categories. These findings emphasize that fine tuning the process parameters and build rate is essential to minimize defects. Finally, fiducial marks have been identified as a source of unintentional porosity defects. These results enable the refinement of process parameters, ultimately optimizing LPBF to achieve enhanced material density and expedite the printing. 
    more » « less
  3. Abstract High‐entropy materials defy historical materials design paradigms by leveraging chemical disorder to kinetically stabilize novel crystalline solid solutions comprised of many end‐members. Formulational diversity results in local crystal structures that are seldom found in conventional materials and can strongly influence macroscopic physical properties. Thermodynamically prescribed chemical flexibility provides a means to tune such properties. Additionally, kinetic metastability results in many possible atomic arrangements, including both solid‐solution configurations and heterogeneous phase assemblies, depending on synthesis conditions. Local disorder induced by metastability, and extensive cation solubilities allowed by thermodynamics combine to give many high‐entropy oxide systems utility as electrochemical, magnetic, thermal, dielectric, and optical materials. Though high‐entropy materials research is maturing rapidly, much remains to be understood and many compositions still await discovery, exploration, and implementation. 
    more » « less
  4. Interest in inorganic ternary nitride materials has grown rapidly over the past few decades, as their diverse chemistries and structures make them appealing for a variety of applications. Due to synthetic challenges posed by the stability of N 2 , the number of predicted nitride compounds dwarfs the number that has been synthesized, offering a breadth of opportunity for exploration. This review summarizes the fundamental properties and structural chemistry of ternary nitrides, leveraging metastability and the impact of nitrogen chemical potential. A discussion of prevalent defects, both detrimental and beneficial, is followed by a survey of synthesis techniques and their interplay with metastability. Throughout the review, we highlight applications (such as solid-state lighting, electrochemical energy storage, and electronic devices) in which ternary nitrides show particular promise. 
    more » « less
  5. Abstract High-density phase change memory (PCM) storage is proposed for materials with multiple intermediate resistance states, which have been observed in 1T-TaS2due to charge density wave (CDW) phase transitions. However, the metastability responsible for this behavior makes the presence of multistate switching unpredictable in TaS2devices. Here, we demonstrate the fabrication of nanothick verti-lateralH-TaS2/1T-TaS2heterostructures in which the number of endotaxial metallicH-TaS2monolayers dictates the number of resistance transitions in 1T-TaS2lamellae near room temperature. Further, we also observe optically active heterochirality in the CDW superlattice structure, which is modulated in concert with the resistivity steps, and we show how strain engineering can be used to nucleate these polytype conversions. This work positions the principle of endotaxial heterostructures as a promising conceptual framework for reliable, non-volatile, and multi-level switching of structure, chirality, and resistance. 
    more » « less