skip to main content


This content will become publicly available on January 31, 2025

Title: A Hierarchical Classification Method for High-accuracy Instruction Disassembly with Near-field EM Measurements
Electromagnetic (EM) fields have been extensively studied as potent side-channel tools for testing the security of hardware implementations. In this work, a low-cost side-channel disassembler that uses fine-grained EM signals to predict a program's execution trace with high accuracy is proposed. Unlike conventional side-channel disassemblers, the proposed disassembler does not require extensive randomized instantiations of instructions to profile them, instead relying on leakage-model-informed sub-sampling of potential architectural states resulting from instruction execution, which is further augmented by using a structured hierarchical approach. The proposed disassembler consists of two phases: (i) In the feature-selection phase, signals are collected with a relatively small EM probe, performing high-resolution scans near the chip surface, as profiling codes are executed. The measured signals from the numerous probe configurations are compiled into a hierarchical database by storing the min-max envelopes of the probed EM fields and differential signals derived from them, a novel dimension that increases the potency of the analysis. The envelope-to-envelope distances are evaluated throughout the hierarchy to identify optimal measurement configurations that maximize the distance between each pair of instruction classes. (ii) In the classification phase, signals measured for unknown instructions using optimal measurement configurations identified in the first phase are compared to the envelopes stored in the database to perform binary classification with majority voting, identifying candidate instruction classes at each hierarchical stage. Both phases of the disassembler rely on a four-stage hierarchical grouping of instructions by their length, size, operands, and functions. The proposed disassembler is shown to recover ∼97–99% of instructions from several test and application benchmark programs executed on the AT89S51 microcontroller.  more » « less
Award ID(s):
1901446
NSF-PAR ID:
10514374
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM Transactions on Embedded Computing Systems
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
Volume:
23
Issue:
1
ISSN:
1539-9087
Page Range / eLocation ID:
1 to 21
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Architecture reverse engineering has become an emerging attack against deep neural network (DNN) implemen- tations. Several prior works have utilized side-channel leakage to recover the model architecture while the an DNN is executing on a hardware acceleration platform. In this work, we target an open- source deep-learning accelerator, Versatile Tensor Accelerator (VTA), and utilize electromagnetic (EM) side-channel leakage to comprehensively learn the association between DNN architecture configurations and EM emanations. We also consider the holistic system – including the low-level tensor program code of the VTA accelerator on a Xilinx FPGA, and explore the effect of such low- level configurations on the EM leakage. Our study demonstrates that both the optimization and configuration of tensor programs will affect the EM side-channel leakage. Gaining knowledge of the association between low-level tensor program and the EM emanations, we propose NNReArch, a lightweight tensor program scheduling framework against side- channel-based DNN model architecture reverse engineering. Specifically, NNReArch targets reshaping the EM traces of different DNN operators, through scheduling the tensor program execution of the DNN model so as to confuse the adversary. NNReArch is a comprehensive protection framework supporting two modes, a balanced mode that strikes a balance between the DNN model confidentiality and execution performance, and a secure mode where the most secure setting is chosen. We imple- ment and evaluate the proposed framework on the open-source VTA with state-of-the-art DNN architectures. The experimental results demonstrate that NNReArch can efficiently enhance the model architecture security with a small performance overhead. In addition, the proposed obfuscation technique makes reverse engineering of the DNN architecture significantly harder. 
    more » « less
  2. In this paper, a monotonic power side-channel attack (PSA) is proposed to analyze the security vulnerabilities of flash analog-to-digital converters (ADC), where the digital output of a flash ADC is determined by characterizing the monotonic relationship between the traces of the power consumed and the applied input signals. A novel technique that leverages clock phase division is proposed to secure the power side channel information of a 4-bit flash ADC. The proposed technique adds randomness to decorrelate the input signal from the given power trace as the execution phase of each comparator depends on a thermometer code computed from the previous seven clock cycles. The monotonic PSA is executed on both a secured and unsecured ADC, with results indicating 1.9 bits of information leakage from an unprotected ADC and no data leakage from a protected ADC as the bit-wise accuracy is approximately 50% when secured. The monotonic PSA is more effective at attacking a flash ADC architecture than either a convolutional neural network based PSA or a correlation template PSA. The secured ADC core occupies approximately 2% more area than a non-secure ADC in a 65 nm process, and provides a sampling frequency of up to 500 MHz at a supply voltage of 1.2 V. Index Terms—power side-channel, ADC, 
    more » « less
  3. null (Ed.)
    This paper presents a novel approach to robot task learning from language-based instructions, which focuses on increasing the complexity of task representations that can be taught through verbal instruction. The major proposed contribution is the development of a framework for directly mapping a complex verbal instruction to an executable task representation, from a single training experience. The method can handle the following types of complexities: 1) instructions that use conjunctions to convey complex execution constraints (such as alternative paths of execution, sequential or nonordering constraints, as well as hierarchical representations) and 2) instructions that use prepositions and multiple adjectives to specify action/object parameters relevant for the task. Specific algorithms have been developed for handling conjunctions, adjectives and prepositions as well as for translating the parsed instructions into parameterized executable task representations. The paper describes validation experiments with a PR2 humanoid robot learning new tasks from verbal instruction, as well as an additional range of utterances that can be parsed into executable controllers by the proposed system. 
    more » « less
  4. Bertoni G.M., Regazzoni F. (Ed.)
    The design of software countermeasures against active and passive adversaries is a challenging problem that has been addressed by many authors in recent years. The proposed solutions adopt a theoretical foundation (such as a leakage model) but often do not offer concrete reference implementations to validate the foundation. Contributing to the experimental dimension of this body of work, we propose a customized processor called SKIVA that supports experiments with the design of countermeasures against a broad range of implementation attacks. Based on bitslice programming and recent advances in the literature, SKIVA offers a flexible and modular combination of countermeasures against power-based and timing-based side-channel leakage and fault injection. Multiple configurations of side-channel protection and fault protection enable the programmer to select the desired number of shares and the desired redundancy level for each slice. Recurring and security-sensitive operations are supported in hardware through custom instruction-set extensions. The new instructions support bitslicing, secret-share generation, redundant logic computation, and fault detection. We demonstrate and analyze multiple versions of AES from a side-channel analysis and a fault-injection perspective, in addition to providing a detailed performance evaluation of the protected designs. To our knowledge, this is the first validated end-to-end implementation of a modular bitslice-oriented countermeasure. 
    more » « less
  5. Existing analog-signal side-channels, such as EM emanations, are a consequence of current-flow changes that are dependent on activity inside an electronic circuits. In this paper, we introduce a new class of side-channels that is a consequence of impedance changes in switching circuits, and we refer to it as an impedance-based side-channel. One example of such a side-channel is when digital logic activity causes incoming EM signals to be modulated as they are reflected (backscattered), at frequencies that depend on both the incoming EM signal and the circuit activity. This can cause EM interference or leakage of sensitive information, but it can also be leveraged for RFID tag design. In this paper, we first introduce a new class of side-channels that is a consequence of impedance differences in switching circuits, and we refer to it as an impedance-based side-channel. Then, we demonstrate that the impedance difference between transistor gates in the high-state and in the low-state changes the radar cross section (RCS) and modulates the backscattered signal. Furthermore, we have investigated the possibility of implementing the proposed RFID on ASIC for signal enhancement. Finally, we propose a digital circuit that can be used as a semi-passive RFID tag. To illustrate the adaptability of the proposed RFID, we have designed a variety of RFID applications across carrier frequencies at 5.8 GHz, 17.46 GHz, and 26.5 GHz to demonstrate flexible carrier frequency selection and bit configuration. 
    more » « less