A new Research Experience for Teachers (RET) site was established in the Department of Civil, Construction, and Environmental Engineering at North Dakota State University (NDSU) with funding from the National Science Foundation Division of Engineering Education and Centers (NSF Award #1953102). The site focused on civil engineering instruction around the theme of mitigating natural disasters for secondary education (6th to 12th grade) teachers. Eight local teachers and one pre-service teacher (who comprised the first cohort) were provided with a six-week long authentic research experience during the summer, which they translated into a hands-on curriculum for their classrooms during the 2021-2022 academic year. Partnerships were developed between the host institution, area teachers and local partners from civil engineering industries. This paper will summarize the lessons learned by the authors as well as the effectiveness of the program activities to accomplish two objectives: (1) provide a deeper understanding of civil engineering and (2) develop better abilities among secondary education teachers to prepare future science, technology, engineering and mathematics (STEM) leaders. Several strengths were identified by the authors as they reflected on the summer activities including the successes in creating strong connections between the teachers, faculty members and graduate students, and the industry partners as well as the agility of the core research team to overcome unexpected challenges. However, the reflections also revealed several areas for improvement that would increase the accessibility of the site to underserved and/or underrepresented teacher populations, better utilize the resources available and in general, improve the quality of the program and curriculum developed by the teachers. Included within this paper are suggestions that the authors would make to improve current and future RET sites. All of the teachers agreed or strongly agreed that their participation in the RET program increased their knowledge of STEM topics and specifically, civil engineering topics. The participants agreed to varying extents that they will use the information they learned from the program to teach their students and will implement the new strategies they gained to promote increased student learning about STEM topics. Furthermore, the feedback that they provided corroborated some of the same changes the authors plan to implement.
more »
« less
Reflections from the First Year of a National Science Foundation Research Experience for Teachers in Civil Engineering
Through funding from the National Science Foundation to create a Research Experience for Teachers site at North Dakota State University, the authors provided summer research experiences to current secondary (6th to 12th grade) educators to improve their understanding of the civil engineering field and develop new curriculum modules for their classrooms. Reflection of the first summer program in 2021 highlighted several modifications that could be made to improve the quality of the program and curriculum developed, increase the accessibility to underserved and/or underrepresented populations and to better utilize the limited resources available. This paper summarizes the successes of the RET program and provides several concrete recommendations for future programs. Specifically, recruiting of both teachers and faculty could be more effective when personal communications through known contacts are used. Flexibility in the approach without compromising rigor and expectations allows for a more inclusive program that supports underserved and marginalized populations.
more »
« less
- PAR ID:
- 10514392
- Publisher / Repository:
- Journal of STEM Education Innovations and Research
- Date Published:
- Journal Name:
- Journal of STEM Education Innovations and Research
- Volume:
- 24
- Issue:
- 3
- ISSN:
- 1557-5284
- Page Range / eLocation ID:
- 29-34
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A new Research Experience for Teachers (RET) site was established in the Department of Civil, Construction, and Environmental Engineering at North Dakota State University (NDSU) with funding from the National Science Foundation Division of Engineering Education and Centers (NSF Award #1953102). The site focused on civil engineering instruction around the theme of mitigating natural disasters for secondary education (6th to 12th grade) teachers. Eight local teachers and one pre-service teacher (who comprised the first cohort) were provided with a six-week long authentic research experience during the summer, which they translated into a hands-on curriculum for their classrooms during the 2021-2022 academic year. Partnerships were developed between the host institution, area teachers and local partners from civil engineering industries. This paper will summarize the lessons learned by the authors as well as the effectiveness of the program activities to accomplish two objectives: (1) provide a deeper understanding of civil engineering and (2) develop better abilities among secondary education teachers to prepare future science, technology, engineering and mathematics (STEM) leaders. Several strengths were identified by the authors as they reflected on the summer activities including the successes in creating strong connections between the teachers, faculty members and graduate students, and the industry partners as well as the agility of the core research team to overcome unexpected challenges. However, the reflections also revealed several areas for improvement that would increase the accessibility of the site to underserved and/or underrepresented teacher populations, better utilize the resources available and in general, improve the quality of the program and curriculum developed by the teachers. Included within this paper are suggestions that the authors would make to improve current and future RET sites. All of the teachers agreed or strongly agreed that their participation in the RET program increased their knowledge of STEM topics and specifically, civil engineering topics. The participants agreed to varying extents that they will use the information they learned from the program to teach their students and will implement the new strategies they gained to promote increased student learning about STEM topics. Furthermore, the feedback that they provided corroborated some of the same changes the authors plan to implement.more » « less
-
null (Ed.)This paper introduces the background and establishment of the first Research Experience for Teachers (RET) Site in Arkansas, supported by the National Science Foundation. The Arkansas Data Analytics Teacher Alliance (AR-DATA) program partners with school districts in the Northwest Arkansas region to promote research-driven high school analytics curriculum and education to reach underserved students, such as those from rural areas. At least thirty 9th-12th grade mathematics, computer science, and pre-engineering teachers will participate in AR-DATA and work with faculty mentors, graduate students, curriculum coaches, and industry experts in a six-week RET Summer Program and academic-year follow up to develop and disseminate learning modules to enhance current curriculum, attain new knowledge of data analytics and engineering applications, and benefit professionally through the RET program activities. The learning modules developed will reflect current cutting-edge analytics research, as well as the development needs of next-generation analytics workforce.more » « less
-
This work-in-progress research-to-practice paper presents the development and pilot implementation of curriculum that introduces semiconductor contents in a high school calculus class. The demand for chips soared through the COVID-19 pandemic, exposing our country's semiconductor manufacturing and supply chain risks. The need to reassert US semiconductor leadership will require training a well-educated workforce, starting at the K-12 level. Meanwhile, K-12 STEM teachers often juggle the conflicting requirements of standardized tests and the need to cultivate 21st-century skills, deeper learning, and transferable knowledge, among others. This paper presents a pilot implementation that could address both problems. Selected teachers attended an NSF-funded Research Experience for Teachers (RET) summer program to learn about chip design basics. They also received curriculum development support to design new modules on semiconductor topics that would attract their students' interests.more » « less
-
Efforts to provide pre-college students with engineering or engineering-related experiences are on the rise in the United States. These efforts are typically undertaken independently of one another and are often in competition to garner greater participation. e4usa+FIRST is a first-of-its-kind collaboration between two pre-college engineering/STEM education efforts that aims to break down existing silos between programs. The project was piloted in nine US high schools within underserved areas. The following study examines high school teacher’s preparedness to teach a blended offering between engineering and robotics curricula following a summer professional development (PD) program. Pilot teachers (n = 10) participated in focus groups to share their perceptions of readiness to implement the blended e4usa+FIRST curriculum. Data was analyzed using open coding and constant comparison methods. Most teachers reported confidence in teaching the blended offering, shared their plans and expectations, and brought up concerns regarding time and sustaining student interest especially during a time of pandemic. This project has implications for precollege engineering education efforts as it could provide a foundational understanding of how two successful programs can be blended, playing a critical role in educating high school students in underserved communities to experience engineering.more » « less
An official website of the United States government

