skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Silica particles convert thiol-containing molecules to disulfides
Synthetic amorphous silica is a common food additive and a popular cosmetic ingredient. Mesoporous silica particles are also widely studied for their potential use in drug delivery and imaging applications because of their unique properties, such as tunable pore sizes, large surfaces areas, and assumed biocompatibility. Such a nanomaterial, when consisting of pure silicon dioxide, is generally considered to be chemically inert, but in this study, we showed that oxidation yields for different compounds were facilitated by simply incubating aqueous solutions with pure silica particles. Three thiol-containing molecules, L-cysteine, glutathione, and D-penicillamine, were studied separately, and it was found that more than 95% of oxidation happened after incubating any of these compounds with mesoporous silica particles in the dark for a day at room temperature. Oxidation increased over incubation time, and more oxidation was found for particles having larger surface areas. For nonporous silica particles at submicron ranges, yields of oxidation were different based on the structures of molecules, correlating with steric hindrance while accessing surfaces. We propose that the silyloxy radical (SiO•) on silica surfaces is what facilitates oxidation. Density functional theory calculations were conducted for total energy changes for reactions between different aqueous species and silicon dioxide surfaces. These calculations identified two most plausible pathways of the lowest energy to generate SiO• radicals from water radical cations H2O•+and hydroxyl radicals •OH, previously known to exist at water interfaces.  more » « less
Award ID(s):
2216272
PAR ID:
10514418
Author(s) / Creator(s):
; ;
Publisher / Repository:
National Academy of Sciences (USA)
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
34
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Silica-encapsulated gold core@shell nanoparticles (Au@SiO 2 CSNPs) were synthesized via a tunable bottom-up procedure to catalyze the aerobic oxidation of benzyl alcohol. The nanoparticles exhibit a mesoporous shell which enhances selectivity by inhibiting the formation of larger species. Adding potassium carbonate to the reaction increased conversion from 17.3 to 60.4% while decreasing selectivity from 98.4 to 75.0%. A gold nanoparticle control catalyst with a similar gold surface area took 6 times as long to reach the same conversion, achieving only 49.4% selectivity. These results suggest that the pore size distribution within the inert silica shell of Au@SiO 2 CSNPs inhibits the formation of undesired products to facilitate the selective oxidation of benzaldehyde despite a basic environment. A smaller activation energy, mass transport analysis, and mesopore distribution together suggest the Au@SiO 2 CSNP catalyst demonstrates higher activity through beneficial in-pore orientation, promoting a lower activation energy mechanistic pathway. Taken together, this is a promising catalytic structure to optimize oxidation chemistries, without leveraging surface-interacting factors like chelating agents or active support surfaces. 
    more » « less
  2. Abstract We investigated the photosensitizing properties of secondary organic aerosol (SOA) formed during the hydroxyl radical (OH) initiated oxidation of naphthalene. This SOA was injected into an aerosol flow tube and exposed to UV radiation and gaseous volatile organic compounds or sulfur dioxide (SO2). The aerosol particles were observed to grow in size by photosensitized uptake of d‐limonene and β‐pinene. In the presence of SO2, a photosensitized production (0.2–0.3 µg m−3 h−1) of sulfate was observed at all relative humidity (RH) levels. Some sulfate also formed on particles in the dark, probably due to the presence of organic peroxides. The dark and photochemical pathways exhibited different trends with RH, unraveling different contributions from bulk and surface chemistry. As naphthalene and other polycyclic aromatics are important SOA precursors in the urban and suburban areas, these dark and photosensitized reactions are likely to play an important role in sulfate and SOA formation. 
    more » « less
  3. UV-irradiation of assembled urea-tethered triphenylamine dimers results in the formation of persistent radicals, whereas radicals generated in solution are reactive and quickly degrade. In the solid-state, high quantities of radicals (approximately 1 in 150 molecules) are formed with a half-life of one week with no significant change in the single crystal X-ray diffraction. Remarkably, after decay, re-irradiation of the solid sample regenerates the radicals to their original concentration. The photophysics upon radical generation are also altered. Both the absorption and emission are significantly quenched without external oxidation likely due to the delocalization of the radicals within the crystals. The factors that influence radical stability and generation are correlated to the rigid supramolecular framework formed by the urea tether of the triphenylamine dimer. Electrochemical evidence demonstrates that these compounds can be oxidized in solution at 1.0 V vs. SCE to generate radical cations, whose EPR spectra were compared with spectra of the solid-state photogenerated radicals. Additionally, these compounds display changes in emission due to solvent effects from fluorescence to phosphorescence. Understanding how solid-state assembly alters the photophysical properties of triphenylamines could lead to further applications of these compounds for magnetic and conductive materials. 
    more » « less
  4. Abstract With interests in alkoxy radical formation on natural and artificial surfaces, a physical‐organic study was carried out with a Hammett series of triaryl phosphites (p‐MeO, H,p‐F, andp‐Cl) to trap adsorbed alkoxy radicals on silica nanoparticles. A mechanism which involves PhC (Me)2O• and EtO• trapping in a cumylethyl peroxide sensitized homolysis reaction is consistent with the results. Thep‐F phosphite was able to indirectly monitor the alkoxy radical formation, and31P NMR readily enabled this exploration, but other phosphites of the series such as thep‐MeO phosphite were limited by hydrolysis reactions catalyzed by surface silanol groups. Fluorinated silica nanoparticles helped to suppress the hydrolysis reaction although adventitious water also plays a role in hindering efficient capture of the alkoxy radicals by the phosphite traps. 
    more » « less
  5. Barker, John R; Steiner, Allison L (Ed.)
    Organic aerosols comprise a rich mixture of compounds, many generated via nonselective radical oxidation. This produces a plethora of products, most unidentified, and mechanistic understanding has improved with instrumentation. Recent advances include recognition that some peroxy radicals undergo internal H-atom transfer reactions to produce highly oxygenated molecules and recognition that gas-phase association reactions can form higher molecular weight products capable of nucleation under atmospheric conditions. Particles also range from molecular clusters near 1 nm diameter containing a few molecules to coarse particles above 1 μm containing 1 billion or more molecules. A mixture of organics often drives growth of particles. We can describe this via detailed thermodynamics, and we can also describe the physics driving mixing between separate populations containing semi-volatile organics. Finally, fully size-resolved particle microphysics enables detailed comparisons between theory and observations in chamber experiments. 
    more » « less