Flocking control for multi-agent automated vehicles has attracted more research interest recently. However, one significant challenge is that the common use of point-shaped virtual leaders giving uniform navigations is unsuitable for vehicle motions with varying relative positions and orientations on multi-lane roads, particularly on curved sections. Considering the practical movements of multi-agent ground vehicles, this paper proposes a novel type of polyline-shaped leader(s) that aligns with multi-lane roads. Specifically, the polyline-shaped leader is composed of line segments that consider road curvatures, different lanes, and the flocking lattice configuration. Moreover, an artificial flow guidance method is applied to provide the direction of velocity references to ensure vehicles move within their respective lanes during the formed flocking. Simulation results demonstrate that the proposed approach can successfully regulate vehicles to drive in their lanes in coordinated motion, which gives fewer structural deviations on curved roads compared to the case with the point-shaped leader.
more »
« less
Safety-Guaranteed Learning-Based Flocking Control Design
This letter aims to develop a new learning-based flocking control framework that ensures inter-agent free collision. To achieve this goal, a leader-following flocking control based on a deep Q-network (DQN) is designed to comply with the three Reynolds’ flocking rules. However, due to the inherent conflict between the navigation attraction and inter-agent repulsion in the leader-following flocking scenario, there exists a potential risk of inter-agent collisions, particularly with limited training episodes. Failure to prevent such collision not only caused penalties in training but could lead to damage when the proposed control framework is executed on hardware. To address this issue, a control barrier function (CBF) is incorporated into the learning strategy to ensure collision-free flocking behavior. Moreover, the proposed learning framework with CBF enhances training efficiency and reduces the complexity of reward function design and tuning. Simulation results demonstrate the effectiveness and benefits of the proposed learning methodology and control framework.
more »
« less
- Award ID(s):
- 1828010
- PAR ID:
- 10514442
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Control Systems Letters
- Volume:
- 8
- ISSN:
- 2475-1456
- Page Range / eLocation ID:
- 19 to 24
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, the issue of model uncertainty in safety-critical control is addressed with a data-driven approach. For this purpose, we utilize the structure of an input-output linearization controller based on a nominal model along with a Control Barrier Function and Control Lyapunov Function based Quadratic Program (CBF-CLF-QP). Specifically, we propose a novel reinforcement learning framework which learns the model uncertainty present in the CBF and CLF constraints, as well as other control-affine dynamic constraints in the quadratic program. The trained policy is combined with the nominal model based CBF-CLF-QP, resulting in the Reinforcement Learning based CBF-CLF-QP (RL-CBF-CLF-QP), which addresses the problem of model uncertainty in the safety constraints. The performance of the proposed method is validated by testing it on an underactuated nonlinear bipedal robot walking on randomly spaced stepping stones with one step preview, obtaining stable and safe walking under model uncertainty.more » « less
-
Safe path planning is critical for bipedal robots to operate in safety-critical environments. Common path planning algorithms, such as RRT or RRT*, typically use geometric or kinematic collision check algorithms to ensure collision-free paths toward the target position. However, such approaches may generate non-smooth paths that do not comply with the dynamics constraints of walking robots. It has been shown that the control barrier function (CBF) can be integrated with RRT/RRT* to synthesize dynamically feasible collision-free paths. Yet, existing work has been limited to simple circular or elliptical shape obstacles due to the challenging nature of constructing appropriate barrier functions to represent irregularly shaped obstacles. In this paper, we present a CBF-based RRT* algorithm for bipedal robots to generate a collision-free path through space with multiple polynomial-shaped obstacles. In particular, we used logistic regression to construct polynomial barrier functions from a grid map of the environment to represent irregularly shaped obstacles. Moreover, we developed a multi-step CBF steering controller to ensure the efficiency of free space exploration. The proposed approach was first validated in simulation for a differential drive model, and then experimentally evaluated with a 3D humanoid robot, Digit, in a lab setting with randomly placed obstacles.more » « less
-
Safe and Efficient Reinforcement Learning using Disturbance-Observer-Based Control Barrier FunctionsMatni, Nikolai; Morari, Manfred; Pappas, George J. (Ed.)Safe reinforcement learning (RL) with assured satisfaction of hard state constraints during training has recently received a lot of attention. Safety filters, e.g., based on control barrier functions (CBFs), provide a promising way for safe RL via modifying the unsafe actions of an RL agent on the fly. Existing safety filter-based approaches typically involve learning of uncertain dynamics and quantifying the learned model error, which leads to conservative filters before a large amount of data is collected to learn a good model, thereby preventing efficient exploration. This paper presents a method for safe and efficient RL using disturbance observers (DOBs) and control barrier functions (CBFs). Unlike most existing safe RL methods that deal with hard state constraints, our method does not involve model learning, and leverages DOBs to accurately estimate the pointwise value of the uncertainty, which is then incorporated into a robust CBF condition to generate safe actions. The DOB-based CBF can be used as a safety filter with model-free RL algorithms by minimally modifying the actions of an RL agent whenever necessary to ensure safety throughout the learning process. Simulation results on a unicycle and a 2D quadrotor demonstrate that the proposed method outperforms a state-of-the-art safe RL algorithm using CBFs and Gaussian processes-based model learning, in terms of safety violation rate, and sample and computational efficiency.more » « less
-
Safe and Efficient Reinforcement Learning Using Disturbance-Observer-Based Control Barrier FunctionsSafe reinforcement learning (RL) with assured satisfaction of hard state constraints during training has recently received a lot of attention. Safety filters, e.g., based on control barrier functions (CBFs), provide a promising way for safe RL via modifying the unsafe actions of an RL agent on the fly. Existing safety filter-based approaches typically involve learning of uncertain dynamics and quantifying the learned model error, which leads to conservative filters before a large amount of data is collected to learn a good model, thereby preventing efficient exploration. This paper presents a method for safe and efficient RL using disturbance observers (DOBs) and control barrier functions (CBFs). Unlike most existing safe RL methods that deal with hard state constraints, our method does not involve model learning, and leverages DOBs to accurately estimate the pointwise value of the uncertainty, which is then incorporated into a robust CBF condition to generate safe actions. The DOB-based CBF can be used as a safety filter with model-free RL algorithms by minimally modifying the actions of an RL agent whenever necessary to ensure safety throughout the learning process. Simulation results on a unicycle and a 2D quadrotor demonstrate that the proposed method outperforms a state-of-the-art safe RL algorithm using CBFs and Gaussian processes-based model learning, in terms of safety violation rate, and sample and computational efficiency.more » « less