skip to main content


This content will become publicly available on January 1, 2025

Title: Automated Data Cleaning Can Hurt Fairness in Machine Learning-based Decision Making
In this paper, we interrogate whether data quality issues track demographic group membership (based on sex, race and age) and whether automated data cleaning — of the kind commonly used in production ML systems — impacts the fairness of predictions made by these systems. To the best of our knowledge, the impact of data cleaning on fairness in downstream tasks has not been investigated in the literature. We first analyse the tuples flagged by common error detection strategies in five research datasets. We find that, while specific data quality issues, such as higher rates of missing values, are associated with membership in historically disadvantaged groups, poor data quality does not generally track demographic group membership. As a follow-up, we conduct a large-scale empirical study on the impact of automated data cleaning on fairness, involving more than 26,000 model evaluations. We observe that, while automated data cleaning is unlikely to worsen accuracy, it is more likely to worsen fairness than to improve it, especially when the cleaning techniques are not carefully chosen. Furthermore, we find that the positive or negative impact of a particular cleaning technique often depends on the choice of fairness metric and group definition (single-attribute or intersectional). We make our code and experimental results publicly available. The analysis we conducted in this paper is difficult, primarily because it requires that we think holistically about disparities in data quality, disparities in the effectiveness of data cleaning methods, and impacts of such disparities on ML model performance for different demographic groups. Such holistic analysis can and should be supported by data engineering tools, and requires substantial data engineering research. Towards this goal, we discuss open research questions, envision the development of fairness-aware data cleaning methods, and their integration into complex pipelines for ML-based decision making.  more » « less
Award ID(s):
1916505 1922658
NSF-PAR ID:
10514470
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE Explore
Date Published:
Journal Name:
IEEE Transactions on Knowledge and Data Engineering
ISSN:
1041-4347
Page Range / eLocation ID:
1 to 12
Subject(s) / Keyword(s):
responsible AI data engineering data cleaning data quality algorithmic fairness
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we interrogate whether data quality issues track demographic characteristics such as sex, race and age, and whether automated data cleaning — of the kind commonly used in production ML systems — impacts the fairness of predictions made by these systems. To the best of our knowledge, the impact of data cleaning on fairness in downstream tasks has not been investigated in the literature.We first analyze the tuples flagged by common error detection strategies in five research datasets. We find that, while specific data quality issues, such as higher rates of missing values, are associated with membership in historically disadvantaged groups, poor data quality does not generally track demographic group membership. As a follow-up, we conduct a large-scale empirical study on the impact of automated data cleaning on fairness, involving more than 26,000 model evaluations on five datasets. We observe that, while automated data cleaning has an insignificant impact on both accuracy and fairness in the majority of cases, it is more likely to worsen fairness than to improve it, especially when the cleaning techniques are not carefully chosen. This finding is both significant and worrying, given that it potentially implicates many production ML systems. We make our code and experimental results publicly available.The analysis we conducted in this paper is difficult, primarily because it requires that we think holistically about disparities in data quality, disparities in the effectiveness of data cleaning methods, and impacts of such disparities on ML model performance for different demographic groups. Such holistic analysis can and should be supported with the help of data engineering research. Towards this goal, we envision the development of fairness-aware data cleaning methods, and their integration into complex pipelines for ML-based decision making. 
    more » « less
  2. Current algorithmic fairness tools focus on auditing completed models, neglecting the potential downstream impacts of iterative decisions about cleaning data and training machine learning models. In response, we developed Retrograde, a JupyterLab environment extension for Python that generates real-time, contextual notifications for data scientists about decisions they are making regarding protected classes, proxy variables, missing data, and demographic differences in model performance. Our novel framework uses automated code analysis to trace data provenance in JupyterLab, enabling these notifications. In a between-subjects online experiment, 51 data scientists constructed loan-decision models with Retrograde providing notifications continuously throughout the process, only at the end, or never. Retrograde’s notifications successfully nudged participants to account for missing data, avoid using protected classes as predictors, minimize demographic differences in model performance, and exhibit healthy skepticism about their models. 
    more » « less
  3. null (Ed.)
    The increasing impact of algorithmic decisions on people’s lives compels us to scrutinize their fairness and, in particular, the disparate impacts that ostensibly color-blind algorithms can have on different groups. Examples include credit decisioning, hiring, advertising, criminal justice, personalized medicine, and targeted policy making, where in some cases legislative or regulatory frameworks for fairness exist and define specific protected classes. In this paper we study a fundamental challenge to assessing disparate impacts in practice: protected class membership is often not observed in the data. This is particularly a problem in lending and healthcare. We consider the use of an auxiliary data set, such as the U.S. census, to construct models that predict the protected class from proxy variables, such as surname and geolocation. We show that even with such data, a variety of common disparity measures are generally unidentifiable, providing a new perspective on the documented biases of popular proxy-based methods. We provide exact characterizations of the tightest possible set of all possible true disparities that are consistent with the data (and possibly additional assumptions). We further provide optimization-based algorithms for computing and visualizing these sets and statistical tools to assess sampling uncertainty. Together, these enable reliable and robust assessments of disparities—an important tool when disparity assessment can have far-reaching policy implications. We demonstrate this in two case studies with real data: mortgage lending and personalized medicine dosing. This paper was accepted by Hamid Nazerzadeh, Guest Editor for the Special Issue on Data-Driven Prescriptive Analytics. 
    more » « less
  4. Abstract

    Social conditions shape health and health disparities. However, inquiry and intervention in the social determinants of health all too often rests on thin engagement with customary demographic correlates and predictors rather than robust, empirically and theoretically informed engagement with health and health disparity as biocultural phenomena—the integrated product of structure, materiality, and subjectivity. Within‐group variability is neglected. Lived experiences of nonnormative status in multiple, mutually informing cultural systems are undertheorized. This article reports on research addressing these gaps—a study exploring experiences of body/self discontinuity and physical‐activity engagement among African American adolescent girls. Data suggest that experiences of body/self discontinuity, or unembodiment, are common to membership in multiple, nonnormative social categories, vary in degree and quality, and may bear on disposition toward leisure‐time physical activity. Unembodiment shows promise as a means of characterizing variability in physical‐activity engagement within groups evincing low levels of this health behavior.

     
    more » « less
  5. The importance of incorporating ethics and legal compliance into machine-assisted decision-making is broadly recognized. Further, several lines of recent work have argued that critical opportunities for improving data quality and representativeness, controlling for bias, and allowing humans to oversee and impact computational processes are missed if we do not consider the lifecycle stages upstream from model training and deployment. Yet, very little has been done to date to provide system-level support to data scientists who wish to develop responsible machine learning methods. We aim to fill this gap and present FairPrep, a design and evaluation framework for fairness-enhancing interventions, which helps data scientists follow best practices in ML experimentation. We identify shortcomings in existing empirical studies for analyzing fairness-enhancing interventions and show how FairPrep can be used to measure their impact. Our results suggest that the high variability of the outcomes of fairness-enhancing interventions observed in previous studies is often an artifact of a lack of hyperparameter tuning, and that the choice of a data cleaning method can impact the effectiveness of fairness-enhancing interventions 
    more » « less