skip to main content


This content will become publicly available on April 30, 2025

Title: Pearcey universality at cusps of polygonal lozenge tilings
Abstract

We study uniformly random lozenge tilings of general simply connected polygons. Under a technical assumption that is presumably generic with respect to polygon shapes, we show that the local statistics around a cusp point of the arctic curve converge to the Pearcey process. This verifies the widely predicted universality of edge statistics in the cusp case. Together with the smooth and tangent cases proved by Aggarwal‐Huang and Aggarwal‐Gorin, these are believed to be the three types of edge statistics that can arise in a generic polygon. Our proof is via a local coupling of the random tiling with nonintersecting Bernoulli random walks (NBRW). To leverage this coupling, we establish an optimal concentration estimate for the tiling height function around the cusp. As another step and also a result of potential independent interest, we show that the local statistics of NBRW around a cusp converge to the Pearcey process when the initial configuration consists of two parts with proper density growth, via careful asymptotic analysis of the determinantal formulas.

 
more » « less
Award ID(s):
2246664
PAR ID:
10514510
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley, Courant Institute of Mathematical Sciences
Date Published:
Journal Name:
Communications on Pure and Applied Mathematics
ISSN:
0010-3640
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We study multiplicative statistics for the eigenvalues of unitarily-invariant Hermitian random matrix models. We consider one-cut regular polynomial potentials and a large class of multiplicative statistics. We show that in the large matrix limit several associated quantities converge to limits which are universal in both the polynomial potential and the family of multiplicative statistics considered. In turn, such universal limits are described by the integro-differential Painlevé II equation, and in particular they connect the random matrix models considered with the narrow wedge solution to the KPZ equation at any finite time.

     
    more » « less
  2. Abstract

    We consider the dynamics of light rays in triangle tilings where triangles are transparent and adjacent triangles have equal but opposite indices of refraction. We find that the behavior of a trajectory on a triangle tiling is described by an orientation‐reversing three‐interval exchange transformation on the circle, and that the behavior of all the trajectories on a given triangle tiling is described by a polygon exchange transformation. We observe that, for a particular choice of triangle tiling, certain trajectories appear to approach the Rauzy fractal, under rescaling.

     
    more » « less
  3. In this work, we present a methodology for predicting the optical performance impacts of random and structured MSF surface errors using pupil-difference probability distribution (PDPD) moments. In addition, we show that, for random mid-spatial frequency (MSF) surface errors, performance estimates from the PDPD moments converge to performance estimates that assume random statistics. Finally, we apply these methods to several MSF surface errors with different distributions and compare estimated optical performance values to predictions based on earlier methods assuming random error distributions.

     
    more » « less
  4. null (Ed.)
    We consider the construction of a polygon P with n vertices whose turning angles at the vertices are given by a sequence A=(α0,…,αn−1) , αi∈(−π,π) , for i∈{0,…,n−1} . The problem of realizing A by a polygon can be seen as that of constructing a straight-line drawing of a graph with prescribed angles at vertices, and hence, it is a special case of the well studied problem of constructing an angle graph. In 2D, we characterize sequences A for which every generic polygon P⊂R2 realizing A has at least c crossings, for every c∈N , and describe an efficient algorithm that constructs, for a given sequence A, a generic polygon P⊂R2 that realizes A with the minimum number of crossings. In 3D, we describe an efficient algorithm that tests whether a given sequence A can be realized by a (not necessarily generic) polygon P⊂R3 , and for every realizable sequence the algorithm finds a realization. 
    more » « less
  5. We consider the construction of a polygon P with n vertices whose turning angles at the vertices are given by a sequence A = (α0 , . . . , αn−1 ), αi ∈ (−π,π), for i ∈ {0,...,n − 1}. The problem of realizing A by a polygon can be seen as that of constructing a straight-line drawing of a graph with prescribed angles at vertices, and hence, it is a special case of the well studied problem of constructing an angle graph. In 2D, we characterize sequences A for which every generic polygon P ⊂ R2 realizing A has at least c crossings, and describe an efficient algorithm that constructs, for a given sequence A, a generic polygon P ⊂ R2 that realizes A with the minimum number of crossings. In 3D, we describe an efficient algorithm that tests whether a given sequence A can be realized by a (not necessarily generic) polygon P ⊂ R3, and for every realizable sequence finds a realization. 
    more » « less