Standard surface specifications for mid-spatial frequency (MSF) errors do not capture complex surface topography and often lose critical information by making simplifying assumptions about surface distribution and statistics. As a result, it is challenging to link surface specifications with optical performance. In this work, we present use of the pupil-difference probability distribution (PDPD) moments to assess general MSF surface errors and show how the PDPD moments relate to the relative modulation.
more »
« less
Use of pupil-difference moments for predicting optical performance impacts of generalized mid-spatial frequency surface errors
In this work, we present a methodology for predicting the optical performance impacts of random and structured MSF surface errors using pupil-difference probability distribution (PDPD) moments. In addition, we show that, for random mid-spatial frequency (MSF) surface errors, performance estimates from the PDPD moments converge to performance estimates that assume random statistics. Finally, we apply these methods to several MSF surface errors with different distributions and compare estimated optical performance values to predictions based on earlier methods assuming random error distributions.
more »
« less
- PAR ID:
- 10469003
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 31
- Issue:
- 22
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 36337
- Size(s):
- Article No. 36337
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose a workflow for modeling generalized mid-spatial frequency (MSF) errors in optical imaging systems. This workflow enables the classification of MSF distributions, filtering of bandlimited signatures, propagation of MSF errors to the exit pupil, and performance predictions that differentiate performance impacts due to the MSF distributions. We demonstrate the workflow by modeling the performance impacts of MSF errors for both transmissive and reflective imaging systems with near-diffraction-limited performance.more » « less
-
Mid-spatial frequency (MSF) errors impact optical performance. Conventional surface specification methods assume isotropy, which gives misleading results for surfaces with anisotropic errors. We propose an alternate surface specification method. © 2019 The Author(s) OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (220.0220) Optical design and fabrication.more » « less
-
Specification and tolerancing of surfaces with mid-spatial frequency (MSF) errors are challenging and require new tools to augment simple surface statistics to better represent the structured characteristics of these errors. A novel surface specification method is developed by considering the structured and anisotropic nature of MSF errors and their impact on the modulation transfer function (MTF). The result is an intuitive plot of bandlimited RMS error values in polar coordinates which contains the surface error anisotropy information and enables an easy to understand acceptance criterion. Methods, application examples, and the connection of this surface specification approach to the MTF are discussed. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreementmore » « less
-
Abstract Although prior studies have evaluated the role of sampling errors associated with local and regional methods to estimate peak flow quantiles, the investigation of epistemic errors is more difficult because the underlying properties of the random variable have been prescribed using ad‐hoc characterizations of the regional distributions of peak flows. This study addresses this challenge using representations of regional peak flow distributions derived from a combined framework of stochastic storm transposition, radar rainfall observations, and distributed hydrologic modeling. The authors evaluated four commonly used peak flow quantile estimation methods using synthetic peak flows at 5,000 sites in the Turkey River watershed in Iowa, USA. They first used at‐site flood frequency analysis using the Pearson Type III distribution with L‐moments. The authors then pooled regional information using (1) the index flood method, (2) the quantile regression technique, and (3) the parameter regression. This approach allowed quantification of error components stemming from epistemic assumptions, parameter estimation method, sample size, and, in the regional approaches, the number ofpooledsites. The results demonstrate that the inability to capture the spatial variability of the skewness of the peak flows dominates epistemic error for regional methods. We concluded that, in the study basin, this variability could be partially explained by river network structure and the predominant orientation of the watershed. The general approach used in this study is promising in that it brings new tools and sources of data to the study of the old hydrologic problem of flood frequency analysis.more » « less
An official website of the United States government
