Abstract We fit the mass and radial profile of the Orphan–Chenab Stream’s (OCS) dwarf-galaxy progenitor by using turnoff stars in the Sloan Digital Sky Survey and the Dark Energy Camera to constrainN-body simulations of the OCS progenitor falling into the Milky Way on the 1.5 PetaFLOPS MilkyWay@home distributed supercomputer. We infer the internal structure of the OCS’s progenitor under the assumption that it was a spherically symmetric dwarf galaxy composed of a stellar system embedded in an extended dark matter halo. We optimize the evolution time, the baryonic and dark matter scale radii, and the baryonic and dark matter masses of the progenitor using a differential evolution algorithm. The likelihood score for each set of parameters is determined by comparing the simulated tidal stream to the angular distribution of OCS stars observed in the sky. We fit the total mass of the OCS’s progenitor to (2.0 ± 0.3) × 107M⊙with a mass-to-light ratio ofγ= 73.5 ± 10.6 and (1.1 ± 0.2) × 106M⊙within 300 pc of its center. Within the progenitor’s half-light radius, we estimate a total mass of (4.0 ± 1.0) × 105M⊙. We also fit the current sky position of the progenitor’s remnant to be (α,δ) = ((166.0 ± 0.9)°, (−11.1 ± 2.5)°) and show that it is gravitationally unbound at the present time. The measured progenitor mass is on the low end of previous measurements and, if confirmed, lowers the mass range of ultrafaint dwarf galaxies. Our optimization assumes a fixed Milky Way potential, OCS orbit, and radial profile for the progenitor, ignoring the impact of the Large Magellanic Cloud.
more »
« less
Microgalaxies in LCDM
Abstract A fundamental prediction of the Lambda cold dark matter cosmology is the centrally divergent cuspy density profile of dark matter haloes. Density cusps render cold dark matter haloes resilient to tides, and protect dwarf galaxies embedded in them from full tidal disruption. The hierarchical assembly history of the Milky Way may therefore give rise to a population of “microgalaxies”; i.e., heavily stripped remnants of early accreted satellites, which can reach arbitrarily low luminosity. Assuming that the progenitor systems are dark matter dominated, we use an empirical formalism for tidal stripping to predict the evolution of the luminosity, size, and velocity dispersion of such remnants, tracing their tidal evolution across multiple orders of magnitude in mass and size. The evolutionary tracks depend sensitively on the progenitor distribution of stellar binding energies. We explore three cases that likely bracket most realistic models of dwarf galaxies: one where the energy distribution of the most tightly bound stars follows that of the dark matter, and two where stars are defined by either an exponential density or surface brightness profile. The tidal evolution in the size–velocity dispersion plane is quite similar for these three models, although their remnants may differ widely in luminosity. Microgalaxies are therefore best distinguished from globular clusters by the presence of dark matter; either directly, by measuring their velocity dispersion, or indirectly, by examining their tidal resilience. Our work highlights the need for further theoretical and observational constraints on the stellar energy distribution in dwarf galaxies.
more »
« less
- PAR ID:
- 10514569
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 968
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 89
- Size(s):
- Article No. 89
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We present a suite of 16 high-resolution hydrodynamic simulations of an isolated dwarf galaxy (gaseous and stellar disc plus a stellar bulge) within an initially cuspy dark matter (DM) halo, including self-interactions between the DM particles; as well as stochastic star formation and subsequent supernova feedback (SNF), implemented using the stellar feedback model SMUGGLE. The simulations start from identical initial conditions, and we regulate the strength of DM self-interactions and SNF by systematically varying the self-interacting DM (SIDM) momentum transfer cross-section and the gas density threshold for star formation. The DM halo forms a constant density core of similar size and shape for several combinations of those two parameters. Haloes with cores that are formed due to SIDM (adiabatic cusp-core transformation) have velocity dispersion profiles that are closer to isothermal than those of haloes with cores that are formed due to SNF in simulations with bursty star formation (impulsive cusp-core transformation). Impulsive SNF can generate positive stellar age gradients and increase random motion in the gas at the centre of the galaxy. Simulated galaxies in haloes with cores that were formed adiabatically are spatially more extended, with stellar metallicity gradients that are shallower (at late times) than those of galaxies in other simulations. Such observable properties of the gas and the stars, which indicate either an adiabatic or an impulsive evolution of the gravitational potential, may be used to determine whether observed cores in DM haloes are formed through DM self-interactions or in response to impulsive SNF.more » « less
-
null (Ed.)ABSTRACT We present a suite of baryonic cosmological zoom-in simulations of self-interacting dark matter (SIDM) haloes within the ‘Feedback In Realistic Environment’ (FIRE) project. The three simulated haloes have virial masses of $$\sim 10^{12}\, \text{M}_\odot$$ at z = 0, and we study velocity-independent self-interaction cross sections of 1 and 10 $${\rm cm^2 \, g^{-1}}$$. We study star formation rates and the shape of dark matter density profiles of the parent haloes in both cold dark matter (CDM) and SIDM models. Galaxies formed in the SIDM haloes have higher star formation rates at z ≤ 1, resulting in more massive galaxies compared to the CDM simulations. While both CDM and SIDM simulations show diverse shape of the dark matter density profiles, the SIDM haloes can reach higher and more steep central densities within few kpcs compared to the CDM haloes. We identify a correlation between the build-up of the stars within the half-mass radii of the galaxies and the growth in the central dark matter densities. The thermalization process in the SIDM haloes is enhanced in the presence of a dense stellar component. Hence, SIDM haloes with highly concentrated baryonic profiles are predicted to have higher central dark matter densities than the CDM haloes. Overall, the SIDM haloes are more responsive to the presence of a massive baryonic distribution than their CDM counterparts.more » « less
-
ABSTRACT We use the GRUMPY galaxy formation model based on a suite of zoom-in, high-resolution, dissipationless Λ Cold Dark Matter (ΛCDM) simulations of the Milky Way (MW) sized haloes to examine total matter density within the half-mass radius of stellar distribution, ρtot(< r1/2), of satellite dwarf galaxies around the MW hosts and their mass assembly histories. We compare model results to ρtot(< r1/2) estimates for observed dwarf satellites of the Milky Way spanning their entire luminosity range. We show that observed MW dwarf satellites exhibit a trend of decreasing total matter density within a half-mass radius, ρtot(< r1/2), with increasing stellar mass. This trend is in general agreement with the trend predicted by the model. None of the observed satellites are overly dense compared to the results of our ΛCDM-based model. We also show that although the halo mass of many satellite galaxies is comparable to the halo mass of the MW progenitor at z ≳ 10, at these early epochs halos that survive as satellites to z = 0 are located many virial radii away from the MW progenitors and thus do not have a chance to merge with it. Our results show that neither the densities estimated in observed Milky Way satellites nor their mass assembly histories pose a challenge to the ΛCDM model. In fact, the broad agreement between density trends with the stellar mass of the observed and model galaxies can be considered as yet another success of the model.more » « less
-
Abstract We present Keck/DEIMOS spectroscopy of the first complete sample of ultradiffuse galaxies (UDGs) in the Virgo cluster. We select all UDGs in Virgo that contain at least 10 globular cluster (GC) candidates and are more than 2.5 σ outliers in scaling relations of size, surface brightness, and luminosity (a total of 10 UDGs). We use the radial velocity of their GC satellites to measure the velocity dispersion of each UDG. We find a mixed bag of galaxies, from one UDG that shows no signs of dark matter, to UDGs that follow the luminosity–dispersion relation of early-type galaxies, to the most extreme examples of heavily dark matter–dominated galaxies that break well-known scaling relations such as the luminosity–dispersion or U-shaped total mass-to-light ratio relations. This is indicative of a number of mechanisms at play forming these peculiar galaxies. Some of them may be the most extended version of dwarf galaxies, while others are so extreme that they seem to populate dark matter halos consistent with that of the Milky Way or even larger. Even though Milky Way stars and other GC interlopers contaminating our sample of GCs cannot be fully ruled out, our assessment of this potential problem and simulations indicate that the probability is low and, if present, unlikely to be enough to explain the extreme dispersions measured. Further confirmation from stellar kinematics studies in these UDGs would be desirable. The lack of such extreme objects in any of the state-of-the-art simulations opens an exciting avenue of new physics shaping these galaxies.more » « less
An official website of the United States government
