Abstract The transverse momentum ($$p_{\textrm{T}}$$ ) differential production cross section of the promptly produced charm-strange baryon$$\mathrm {\Xi _{c}^{0}}$$ (and its charge conjugate$$\overline{\mathrm {\Xi _{c}^{0}}}$$ ) is measured at midrapidity via its hadronic decay into$$\mathrm{\pi ^{+}}\Xi ^{-}$$ in p–Pb collisions at a centre-of-mass energy per nucleon–nucleon collision$$\sqrt{s_{\textrm{NN}}}~=~5.02$$ TeV with the ALICE detector at the LHC. The$$\mathrm {\Xi _{c}^{0}}$$ nuclear modification factor ($$R_{\textrm{pPb}}$$ ), calculated from the cross sections in pp and p–Pb collisions, is presented and compared with the$$R_{\textrm{pPb}}$$ of$$\mathrm {\Lambda _{c}^{+}}$$ baryons. The ratios between the$$p_{\textrm{T}}$$ -differential production cross section of$$\mathrm {\Xi _{c}^{0}}$$ baryons and those of$$\mathrm {D^0}$$ mesons and$$\mathrm {\Lambda _{c}^{+}}$$ baryons are also reported and compared with results at forward and backward rapidity from the LHCb Collaboration. The measurements of the production cross section of prompt$$\Xi ^0_\textrm{c}$$ baryons are compared with a model based on perturbative QCD calculations of charm-quark production cross sections, which includes only cold nuclear matter effects in p–Pb collisions, and underestimates the measurement by a factor of about 50. This discrepancy is reduced when the data is compared with a model that includes string formation beyond leading-colour approximation or in which hadronisation is implemented via quark coalescence. The$$p_{\textrm{T}}$$ -integrated cross section of prompt$$\Xi ^0_\textrm{c}$$ -baryon production at midrapidity extrapolated down to$$p_{\textrm{T}}$$ = 0 is also reported. These measurements offer insights and constraints for theoretical calculations of the hadronisation process. Additionally, they provide inputs for the calculation of the charm production cross section in p–Pb collisions at midrapidity.
more »
« less
Measurement of non-prompt $${{\textrm{D}}^{0}}$$-meson elliptic flow in Pb–Pb collisions at $$\sqrt{s_{\textrm{NN}}} = 5.02$$ TeV
Abstract The elliptic flow$$(v_2)$$ of$${\textrm{D}}^{0}$$ mesons from beauty-hadron decays (non-prompt$${\textrm{D}}^{0})$$ was measured in midcentral (30–50%) Pb–Pb collisions at a centre-of-mass energy per nucleon pair$$\sqrt{s_{\textrm{NN}}} = 5.02$$ TeV with the ALICE detector at the LHC. The$${\textrm{D}}^{0}$$ mesons were reconstructed at midrapidity$$(|y|<0.8)$$ from their hadronic decay$$\mathrm {D^0 \rightarrow K^-\uppi ^+}$$ , in the transverse momentum interval$$2< p_{\textrm{T}} < 12$$ GeV/c. The result indicates a positive$$v_2$$ for non-prompt$${{\textrm{D}}^{0}}$$ mesons with a significance of 2.7$$\sigma $$ . The non-prompt$${{\textrm{D}}^{0}}$$ -meson$$v_2$$ is lower than that of prompt non-strange D mesons with 3.2$$\sigma $$ significance in$$2< p_\textrm{T} < 8~\textrm{GeV}/c$$ , and compatible with the$$v_2$$ of beauty-decay electrons. Theoretical calculations of beauty-quark transport in a hydrodynamically expanding medium describe the measurement within uncertainties.
more »
« less
- PAR ID:
- 10514583
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- link.springer.com
- Date Published:
- Journal Name:
- The European Physical Journal C
- Volume:
- 83
- Issue:
- 12
- ISSN:
- 1434-6052
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The total charm-quark production cross section per unit of rapidity$$\textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y$$ , and the fragmentation fractions of charm quarks to different charm-hadron species$$f(\textrm{c}\rightarrow {\textrm{h}}_{\textrm{c}})$$ , are measured for the first time in p–Pb collisions at$$\sqrt{s_\textrm{NN}} = 5.02~\text {Te}\hspace{-1.00006pt}\textrm{V} $$ at midrapidity ($$-0.96<0.04$$ in the centre-of-mass frame) using data collected by ALICE at the CERN LHC. The results are obtained based on all the available measurements of prompt production of ground-state charm-hadron species:$$\textrm{D}^{0}$$ ,$$\textrm{D}^{+}$$ ,$$\textrm{D}_\textrm{s}^{+}$$ , and$$\mathrm {J/\psi }$$ mesons, and$$\Lambda _\textrm{c}^{+}$$ and$$\Xi _\textrm{c}^{0}$$ baryons. The resulting cross section is$$ \textrm{d}\sigma ({{\textrm{c}}\overline{\textrm{c}}})/\textrm{d}y =219.6 \pm 6.3\;(\mathrm {stat.}) {\;}_{-11.8}^{+10.5}\;(\mathrm {syst.}) {\;}_{-2.9}^{+8.3}\;(\mathrm {extr.})\pm 5.4\;(\textrm{BR})\pm 4.6\;(\mathrm {lumi.}) \pm 19.5\;(\text {rapidity shape})+15.0\;(\Omega _\textrm{c}^{0})\;\textrm{mb} $$ , which is consistent with a binary scaling of pQCD calculations from pp collisions. The measured fragmentation fractions are compatible with those measured in pp collisions at$$\sqrt{s} = 5.02$$ and 13 TeV, showing an increase in the relative production rates of charm baryons with respect to charm mesons in pp and p–Pb collisions compared with$$\mathrm {e^{+}e^{-}}$$ and$$\mathrm {e^{-}p}$$ collisions. The$$p_\textrm{T}$$ -integrated nuclear modification factor of charm quarks,$$R_\textrm{pPb}({\textrm{c}}\overline{\textrm{c}})= 0.91 \pm 0.04\;\mathrm{(stat.)} ^{+0.08}_{-0.09}\;\mathrm{(syst.)} ^{+0.05}_{-0.03}\;\mathrm{(extr.)} \pm 0.03\;\mathrm{(lumi.)}$$ , is found to be consistent with unity and with theoretical predictions including nuclear modifications of the parton distribution functions.more » « less
-
Abstract A search is reported for charge-parity$$CP$$ violation in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ decays, using data collected in proton–proton collisions at$$\sqrt{s} = 13\,\text {Te}\hspace{-.08em}\text {V} $$ recorded by the CMS experiment in 2018. The analysis uses a dedicated data set that corresponds to an integrated luminosity of 41.6$$\,\text {fb}^{-1}$$ , which consists of about 10 billion events containing a pair of b hadrons, nearly all of which decay to charm hadrons. The flavor of the neutral D meson is determined by the pion charge in the reconstructed decays$${{{\textrm{D}}}^{{*+}}} \rightarrow {{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} $$ and$${{{\textrm{D}}}^{{*-}}} \rightarrow {\overline{{\textrm{D}}}^{{0}}} {{{\mathrm{\uppi }}}^{{-}}} $$ . The$$CP$$ asymmetry in$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} $$ is measured to be$$A_{CP} ({{\textrm{K}} _{\text {S}}^{{0}}} {{\textrm{K}} _{\text {S}}^{{0}}} ) = (6.2 \pm 3.0 \pm 0.2 \pm 0.8)\%$$ , where the three uncertainties represent the statistical uncertainty, the systematic uncertainty, and the uncertainty in the measurement of the$$CP$$ asymmetry in the$${{{\textrm{D}}}^{{0}}} \rightarrow {{\textrm{K}} _{\text {S}}^{{0}}} {{{\mathrm{\uppi }}}^{{+}}} {{{\mathrm{\uppi }}}^{{-}}} $$ decay. This is the first$$CP$$ asymmetry measurement by CMS in the charm sector as well as the first to utilize a fully hadronic final state.more » « less
-
Abstract We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$ and$$ \mu ^{-}$$ beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$ $$< W<$$ 17.0 GeV/$$c^2$$ , 1.0 (GeV/c)$$^2$$ $$< Q^2<$$ 10.0 (GeV/c)$$^2$$ and 0.01 (GeV/c)$$^2$$ $$< p_{\textrm{T}}^2<$$ 0.5 (GeV/c)$$^2$$ . Here,Wdenotes the mass of the final hadronic system,$$Q^2$$ the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$ the transverse momentum of the$$\rho ^0$$ meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$ ) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ production.more » « less
-
A<sc>bstract</sc> A time-dependent, flavour-tagged measurement ofCPviolation is performed withB0→ D+D−and$$ {B}_s^0 $$ →$$ {D}_s^{+}{D}_s^{-} $$ decays, using data collected by the LHCb detector in proton-proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 6 fb−1. InB0→ D+D−decays theCP-violation parameters are measured to be$$ {\displaystyle \begin{array}{c}{S}_{D^{+}{D}^{-}}=-0.552\pm 0.100\left(\textrm{stat}\right)\pm 0.010\left(\textrm{syst}\right),\\ {}{C}_{D^{+}{D}^{-}}=0.128\pm 0.103\left(\textrm{stat}\right)\pm 0.010\left(\textrm{syst}\right).\end{array}} $$ In$$ {B}_s^0 $$ →$$ {D}_s^{+}{D}_s^{-} $$ decays theCP-violating parameter formulation in terms ofϕsand|λ|results in$$ {\displaystyle \begin{array}{c}{\phi}_s=-0.086\pm 0.106\left(\textrm{stat}\right)\pm 0.028\left(\textrm{syst}\right)\textrm{rad},\\ {}\mid {\lambda}_{D_s^{+}{D}_s^{-}}\mid =1.145\pm 0.126\left(\textrm{stat}\right)\pm 0.031\left(\textrm{syst}\right).\end{array}} $$ These results represent the most precise single measurement of theCP-violation parameters in their respective channels. For the first time in a single measurement,CPsymmetry is observed to be violated inB0→ D+D−decays with a significance exceeding six standard deviations.more » « less
An official website of the United States government

