skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Longitudinal Associations of Clinical and Biochemical Head Injury Biomarkers With Head Impact Exposure in Adolescent Football Players
ImportanceConsequences of subconcussive head impacts have been recognized, yet most studies to date have included small samples from a single site, used a unimodal approach, and lacked repeated testing. ObjectiveTo examine time-course changes in clinical (near point of convergence [NPC]) and brain-injury blood biomarkers (glial fibrillary acidic protein [GFAP], ubiquitin C-terminal hydrolase-L1 [UCH-L1], and neurofilament light [NF-L]) in adolescent football players and to test whether changes in the outcomes were associated with playing position, impact kinematics, and/or brain tissue strain. Design, Setting, and ParticipantsThis multisite, prospective cohort study included male high school football players aged 13 to 18 years at 4 high schools in the Midwest during the 2021 high school football season (preseason [July] and August 2 to November 19). ExposureA single football season. Main Outcomes and MeasuresThe main outcomes were NPC (a clinical oculomotor test) and serum levels of GFAP, UCH-L1, and NF-L. Participants’ head impact exposure (frequency and peak linear and rotational accelerations) was tracked using instrumented mouthguards, and maximum principal strain was computed to reflect brain tissue strain. Players’ neurological function was assessed at 5 time points (preseason, post–training camp, 2 in season, and postseason). ResultsNinety-nine male players contributed to the time-course analysis (mean [SD] age, 15.8 [1.1] years), but data from 6 players (6.1%) were excluded from the association analysis due to issues related to mouthguards. Thus, 93 players yielded 9498 head impacts in a season (mean [SD], 102 [113] impacts per player). There were time-course elevations in NPC and GFAP, UCH-L1, and NF-L levels. Compared with baseline, the NPC exhibited a significant elevation over time and peaked at postseason (2.21 cm; 95% CI, 1.80-2.63 cm;P < .001). Levels of GFAP and UCH-L1 increased by 25.6 pg/mL (95% CI, 17.6-33.6 pg/mL;P < .001) and 188.5 pg/mL (95% CI, 145.6-231.4 pg/mL;P < .001), respectively, later in the season. Levels of NF-L were elevated after the training camp (0.78 pg/mL; 95% CI, 0.14-1.41 pg/mL;P = .011) and midseason (0.55 pg/mL; 95% CI, 0.13-0.99 pg/mL;P = .006) but normalized by the end of the season. Changes in UCH-L1 levels were associated with maximum principal strain later in the season (0.052 pg/mL; 95% CI, 0.015-0.088 pg/mL;P = .007) and postseason (0.069 pg/mL; 95% CI, 0.031-0.106 pg/mL;P < .001). Conclusions and RelevanceThe study data suggest that adolescent football players exhibited impairments in oculomotor function and elevations in blood biomarker levels associated with astrocyte activation and neuronal injury throughout a season. Several years of follow-up are needed to examine the long-term effects of subconcussive head impacts in adolescent football players.  more » « less
Award ID(s):
1846059
PAR ID:
10514644
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
jAMa
Date Published:
Journal Name:
JAMA Network Open
Volume:
6
Issue:
5
ISSN:
2574-3805
Page Range / eLocation ID:
e2316601
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ImportanceIdentifying and tracking new infections during an emerging pandemic is crucial to design and deploy interventions to protect populations and mitigate the pandemic’s effects, yet it remains a challenging task. ObjectiveTo characterize the ability of nonprobability online surveys to longitudinally estimate the number of COVID-19 infections in the population both in the presence and absence of institutionalized testing. Design, Setting, and ParticipantsInternet-based online nonprobability surveys were conducted among residents aged 18 years or older across 50 US states and the District of Columbia, using the PureSpectrum survey vendor, approximately every 6 weeks between June 1, 2020, and January 31, 2023, for a multiuniversity consortium—the COVID States Project. Surveys collected information on COVID-19 infections with representative state-level quotas applied to balance age, sex, race and ethnicity, and geographic distribution. Main Outcomes and MeasuresThe main outcomes were (1) survey-weighted estimates of new monthly confirmed COVID-19 cases in the US from January 2020 to January 2023 and (2) estimates of uncounted test-confirmed cases from February 1, 2022, to January 1, 2023. These estimates were compared with institutionally reported COVID-19 infections collected by Johns Hopkins University and wastewater viral concentrations for SARS-CoV-2 from Biobot Analytics. ResultsThe survey spanned 17 waves deployed from June 1, 2020, to January 31, 2023, with a total of 408 515 responses from 306 799 respondents (mean [SD] age, 42.8 [13.0] years; 202 416 women [66.0%]). Overall, 64 946 respondents (15.9%) self-reported a test-confirmed COVID-19 infection. National survey-weighted test-confirmed COVID-19 estimates were strongly correlated with institutionally reported COVID-19 infections (Pearson correlation,r = 0.96;P < .001) from April 2020 to January 2022 (50-state correlation mean [SD] value,r = 0.88 [0.07]). This was before the government-led mass distribution of at-home rapid tests. After January 2022, correlation was diminished and no longer statistically significant (r = 0.55;P = .08; 50-state correlation mean [SD] value,r = 0.48 [0.23]). In contrast, survey COVID-19 estimates correlated highly with SARS-CoV-2 viral concentrations in wastewater both before (r = 0.92;P < .001) and after (r = 0.89;P < .001) January 2022. Institutionally reported COVID-19 cases correlated (r = 0.79;P < .001) with wastewater viral concentrations before January 2022, but poorly (r = 0.31;P = .35) after, suggesting that both survey and wastewater estimates may have better captured test-confirmed COVID-19 infections after January 2022. Consistent correlation patterns were observed at the state level. Based on national-level survey estimates, approximately 54 million COVID-19 cases were likely unaccounted for in official records between January 2022 and January 2023. Conclusions and RelevanceThis study suggests that nonprobability survey data can be used to estimate the temporal evolution of test-confirmed infections during an emerging disease outbreak. Self-reporting tools may enable government and health care officials to implement accessible and affordable at-home testing for efficient infection monitoring in the future. 
    more » « less
  2. Abstract Objective:To evaluate the economic costs of reducing the University of Virginia Hospital’s present “3-negative” policy, which continues methicillin-resistantStaphylococcus aureus(MRSA) contact precautions until patients receive 3 consecutive negative test results, to either 2 or 1 negative. Design:Cost-effective analysis. Settings:The University of Virginia Hospital. Patients:The study included data from 41,216 patients from 2015 to 2019. Methods:We developed a model for MRSA transmission in the University of Virginia Hospital, accounting for both environmental contamination and interactions between patients and providers, which were derived from electronic health record (EHR) data. The model was fit to MRSA incidence over the study period under the current 3-negative clearance policy. A counterfactual simulation was used to estimate outcomes and costs for 2- and 1-negative policies compared with the current 3-negative policy. Results:Our findings suggest that 2-negative and 1-negative policies would have led to 6 (95% CI, −30 to 44;P< .001) and 17 (95% CI, −23 to 59; −10.1% to 25.8%;P< .001) more MRSA cases, respectively, at the hospital over the study period. Overall, the 1-negative policy has statistically significantly lower costs ($628,452; 95% CI, $513,592–$752,148) annually (P< .001) in US dollars, inflation-adjusted for 2023) than the 2-negative policy ($687,946; 95% CI, $562,522–$812,662) and 3-negative ($702,823; 95% CI, $577,277–$846,605). Conclusions:A single negative MRSA nares PCR test may provide sufficient evidence to discontinue MRSA contact precautions, and it may be the most cost-effective option. 
    more » « less
  3. ImportanceScreening with low-dose computed tomography (CT) has been shown to reduce mortality from lung cancer in randomized clinical trials in which the rate of adherence to follow-up recommendations was over 90%; however, adherence to Lung Computed Tomography Screening Reporting &amp; Data System (Lung-RADS) recommendations has been low in practice. Identifying patients who are at risk of being nonadherent to screening recommendations may enable personalized outreach to improve overall screening adherence. ObjectiveTo identify factors associated with patient nonadherence to Lung-RADS recommendations across multiple screening time points. Design, Setting, and ParticipantsThis cohort study was conducted at a single US academic medical center across 10 geographically distributed sites where lung cancer screening is offered. The study enrolled individuals who underwent low-dose CT screening for lung cancer between July 31, 2013, and November 30, 2021. ExposuresLow-dose CT screening for lung cancer. Main Outcomes and MeasuresThe main outcome was nonadherence to follow-up recommendations for lung cancer screening, defined as failing to complete a recommended or more invasive follow-up examination (ie, diagnostic dose CT, positron emission tomography–CT, or tissue sampling vs low-dose CT) within 15 months (Lung-RADS score, 1 or 2), 9 months (Lung-RADS score, 3), 5 months (Lung-RADS score, 4A), or 3 months (Lung-RADS score, 4B/X). Multivariable logistic regression was used to identify factors associated with patient nonadherence to baseline Lung-RADS recommendations. A generalized estimating equations model was used to assess whether the pattern of longitudinal Lung-RADS scores was associated with patient nonadherence over time. ResultsAmong 1979 included patients, 1111 (56.1%) were aged 65 years or older at baseline screening (mean [SD] age, 65.3 [6.6] years), and 1176 (59.4%) were male. The odds of being nonadherent were lower among patients with a baseline Lung-RADS score of 1 or 2 vs 3 (adjusted odds ratio [AOR], 0.35; 95% CI, 0.25-0.50), 4A (AOR, 0.21; 95% CI, 0.13-0.33), or 4B/X, (AOR, 0.10; 95% CI, 0.05-0.19); with a postgraduate vs college degree (AOR, 0.70; 95% CI, 0.53-0.92); with a family history of lung cancer vs no family history (AOR, 0.74; 95% CI, 0.59-0.93); with a high age-adjusted Charlson Comorbidity Index score (≥4) vs a low score (0 or 1) (AOR, 0.67; 95% CI, 0.46-0.98); in the high vs low income category (AOR, 0.79; 95% CI, 0.65-0.98); and referred by physicians from pulmonary or thoracic-related departments vs another department (AOR, 0.56; 95% CI, 0.44-0.73). Among 830 eligible patients who had completed at least 2 screening examinations, the adjusted odds of being nonadherent to Lung-RADS recommendations at the following screening were increased in patients with consecutive Lung-RADS scores of 1 to 2 (AOR, 1.38; 95% CI, 1.12-1.69). Conclusions and RelevanceIn this retrospective cohort study, patients with consecutive negative lung cancer screening results were more likely to be nonadherent with follow-up recommendations. These individuals are potential candidates for tailored outreach to improve adherence to recommended annual lung cancer screening. 
    more » « less
  4. ImportanceTrust in physicians and hospitals has been associated with achieving public health goals, but the increasing politicization of public health policies during the COVID-19 pandemic may have adversely affected such trust. ObjectiveTo characterize changes in US adults’ trust in physicians and hospitals over the course of the COVID-19 pandemic and the association between this trust and health-related behaviors. Design, Setting, and ParticipantsThis survey study uses data from 24 waves of a nonprobability internet survey conducted between April 1, 2020, and January 31, 2024, among 443 455 unique respondents aged 18 years or older residing in the US, with state-level representative quotas for race and ethnicity, age, and gender. Main Outcome and MeasureSelf-report of trust in physicians and hospitals; self-report of SARS-CoV-2 and influenza vaccination and booster status. Survey-weighted regression models were applied to examine associations between sociodemographic features and trust and between trust and health behaviors. ResultsThe combined data included 582 634 responses across 24 survey waves, reflecting 443 455 unique respondents. The unweighted mean (SD) age was 43.3 (16.6) years; 288 186 respondents (65.0%) reported female gender; 21 957 (5.0%) identified as Asian American, 49 428 (11.1%) as Black, 38 423 (8.7%) as Hispanic, 3138 (0.7%) as Native American, 5598 (1.3%) as Pacific Islander, 315 278 (71.1%) as White, and 9633 (2.2%) as other race and ethnicity (those who selected “Other” from a checklist). Overall, the proportion of adults reporting a lot of trust for physicians and hospitals decreased from 71.5% (95% CI, 70.7%-72.2%) in April 2020 to 40.1% (95% CI, 39.4%-40.7%) in January 2024. In regression models, features associated with lower trust as of spring and summer 2023 included being 25 to 64 years of age, female gender, lower educational level, lower income, Black race, and living in a rural setting. These associations persisted even after controlling for partisanship. In turn, greater trust was associated with greater likelihood of vaccination for SARS-CoV-2 (adjusted odds ratio [OR], 4.94; 95 CI, 4.21-5.80) or influenza (adjusted OR, 5.09; 95 CI, 3.93-6.59) and receiving a SARS-CoV-2 booster (adjusted OR, 3.62; 95 CI, 2.99-4.38). Conclusions and RelevanceThis survey study of US adults suggests that trust in physicians and hospitals decreased during the COVID-19 pandemic. As lower levels of trust were associated with lesser likelihood of pursuing vaccination, restoring trust may represent a public health imperative. 
    more » « less
  5. ImportanceThe frequent occurrence of cognitive symptoms in post–COVID-19 condition has been described, but the nature of these symptoms and their demographic and functional factors are not well characterized in generalizable populations. ObjectiveTo investigate the prevalence of self-reported cognitive symptoms in post–COVID-19 condition, in comparison with individuals with prior acute SARS-CoV-2 infection who did not develop post–COVID-19 condition, and their association with other individual features, including depressive symptoms and functional status. Design, Setting, and ParticipantsTwo waves of a 50-state nonprobability population-based internet survey conducted between December 22, 2022, and May 5, 2023. Participants included survey respondents aged 18 years and older. ExposurePost–COVID-19 condition, defined as self-report of symptoms attributed to COVID-19 beyond 2 months after the initial month of illness. Main Outcomes and MeasuresSeven items from the Neuro-QoL cognition battery assessing the frequency of cognitive symptoms in the past week and patient Health Questionnaire-9. ResultsThe 14 767 individuals reporting test-confirmed COVID-19 illness at least 2 months before the survey had a mean (SD) age of 44.6 (16.3) years; 568 (3.8%) were Asian, 1484 (10.0%) were Black, 1408 (9.5%) were Hispanic, and 10 811 (73.2%) were White. A total of 10 037 respondents (68.0%) were women and 4730 (32.0%) were men. Of the 1683 individuals reporting post–COVID-19 condition, 955 (56.7%) reported at least 1 cognitive symptom experienced daily, compared with 3552 of 13 084 (27.1%) of those who did not report post–COVID-19 condition. More daily cognitive symptoms were associated with a greater likelihood of reporting at least moderate interference with functioning (unadjusted odds ratio [OR], 1.31 [95% CI, 1.25-1.36]; adjusted [AOR], 1.30 [95% CI, 1.25-1.36]), lesser likelihood of full-time employment (unadjusted OR, 0.95 [95% CI, 0.91-0.99]; AOR, 0.92 [95% CI, 0.88-0.96]) and greater severity of depressive symptoms (unadjusted coefficient, 1.40 [95% CI, 1.29-1.51]; adjusted coefficient 1.27 [95% CI, 1.17-1.38). After including depressive symptoms in regression models, associations were also found between cognitive symptoms and at least moderate interference with everyday functioning (AOR, 1.27 [95% CI, 1.21-1.33]) and between cognitive symptoms and lower odds of full-time employment (AOR, 0.92 [95% CI, 0.88-0.97]). Conclusions and RelevanceThe findings of this survey study of US adults suggest that cognitive symptoms are common among individuals with post–COVID-19 condition and associated with greater self-reported functional impairment, lesser likelihood of full-time employment, and greater depressive symptom severity. Screening for and addressing cognitive symptoms is an important component of the public health response to post–COVID-19 condition. 
    more » « less