skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trustworthy of Implantable Medical Devices using ECG Biometric
Implantable medical devices (IMD) such as pacemakers, and cardiac defibrillators are becoming increasingly interconnected to networks for remote patient monitoring. However, networked devices are vulnerable to external attacks that could allow adversaries to gain unauthorized access to devices/ data and break patient privacy. To design a lightweight computational trustworthy of IMD, we propose novel ECG-based biometric authentication using lift and shift method based on post-processing data from the noise generated in an ECG signal recording. The lift and shift method is an ideal addition to this system because it is a quick, lightweight process that produces enough random bits for encrypted communication. ECG is a signal that is already being measured by the IMD, so this ECG biometric could utilize the data that is already being actively recorded. We provide a comprehensive evaluation across multiple NIST tests, as well as ENT and Dieharder statistical suites test  more » « less
Award ID(s):
2302084
PAR ID:
10514648
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-2157-9
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Location:
San Jose, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. As the Covid-19 pandemic becomes a nationwide problem, physical contact is no longer acceptable. Therefore, biometric technology can be used for practicing social distancing to prevent the spread of the virus. However, face and fingerprint are vulnerable to presentation attacks. Hence alternative modalities such as ECG based biometric become popular. In this paper, we develop a novel presentation attack using a GAN where a short template of the victim's ECG is captured by an attacker and used to generate synthetic fake ECG signals. We also propose a novel framework utilizing residual neural network architecture to analyze ECG presentation attacks. 
    more » « less
  2. Electrocardiogram (ECG) sensing is an important application for the diagnosis of cardiovascular diseases. Recently, driven by the emerging technology of wearable electronics, massive wearable ECG sensors are developed, which however brings additional sources of noise contamination on ECG signals from these wearable ECG sensors. In this paper, we propose a new low-distortion adaptive Savitzky-Golay (LDASG) filtering method for ECG denoising based on discrete curvature estimation, which demonstrates better performance than the state of the art of ECG denoising. The standard Savitzky-Golay (SG) filter has a remarkable performance of data smoothing. However, it lacks adaptability to signal variations and thus often induces signal distortion for high-variation signals such as ECG. In our method, the discrete curvature estimation is adapted to represent the signal variation for the purpose of mitigating signal distortion. By adaptively designing the proper SG filter according to the discrete curvature for each data sample, the proposed method still retains the intrinsic advantage of SG filters of excellent data smoothing and further tackles the challenge of denoising high signal variations with low signal distortion. In our experiment, we compared our method with the EMD-wavelet based method and the non-local means (NLM) denoising method in the performance of both noise elimination and signal distortion reduction. Particularly, for the signal distortion reduction, our method decreases in MSE by 33.33% when compared to EMD-wavelet and by 50% when compared to NLM, and decreases in PRD by 18.25% when compared to EMD-wavelet and by 25.24% when compared to NLM. Our method shows high potential and feasibility in wide applications of ECG denoising for both clinical use and consumer electronics. 
    more » « less
  3. Electrocardiography (ECG) is the process of recording the electrical activity of the human heart over time using electrodes that are placed over the skin. While the primary usage of electrocardiograms, the recorded signals, has been focused on the check of signs of heart-related diseases, recent studies have moved also toward their usage for human authentication. Thus, an ECG signal can be unique enough to be used independently as a biometric modality. In addition to its inherent liveness detection, it is easy to collect and can be easily captured either via sensors attached to the human body (fingertips, chest, wrist) or even passively using wireless sensors. In this paper, we propose a novel approach that exploits the spectro-temporal dynamic characteristics of the ECG signal to establish personal recognition system using both short-time Fourier transform (STFT) and generalized Morse wavelets (CWT). This process results in enriching the information extracted from the original ECG signal that is inserted in a 2D convolutional neural network (CNN) which extracts higher level and subject-specific ECG-based features for each individual. To validate our proposed CNN model, we performed nested cross-validation using eight different ECG databases. These databases are considered challenging since they include both normal and abnormal heartbeats as well as a dynamic number of subjects. Our proposed algorithms yield superior performance when compared to other state-ofart approaches discussed in the literature, i.e. the STFT-based one achieves an average identification rate, equal error rate (EER), and area under curve (AUC) of 97.86%, 0.0268, and 0.9933 respectively, whereas the CWT achieves comparable to STFT results in 97.5%, 0.0386, and 0.9882 respectively. 
    more » « less
  4. null (Ed.)
    The growing demand for recording longer ECG signals to improve the effectiveness of IoT-enabled remote clinical healthcare is contributing large amounts of ECG data. While lossy compression techniques have shown potential in significantly lowering the amount of data, investigation on how to trade-off between data reduction and data fidelity on ECG data received relatively less attention. This paper gives insight into the power of lossy compression to ECG signals by balancing between data quality and compression ratio. We evaluate the performance of transformed-based lossy compressions on the ECG datasets collected from the Biosemi ActiveTwo devices. Our experimental results indicate that ECG data exhibit high energy compaction property through transformations like DCT and DWT, thus could improve compression ratios significantly without hurting data fidelity much. More importantly, we evaluate the effect of lossy compression on ECG signals by validating the R-peak in the QRS complex. Our method can obtain low error rates measured in PRD (as low as 0.3) and PSNR (up to 67) using only 5% of the transform coefficients. Therefore, R-peaks in the reconstructed ECG signals are almost identical to ones in the original signals, thus facilitating extended ECG monitoring. 
    more » « less
  5. The inverse problem of inferring clinical gold-standard electrocardiogram (ECG) from photoplethysmogram (PPG) that can be measured by affordable wearable Internet of Healthcare Things (IoHT) devices is a research direction receiving growing attention. It combines the easy measurability of PPG and the rich clinical knowledge of ECG for long-term continuous cardiac monitoring. The prior art for reconstruction using a universal basis, such as discrete cosine transform (DCT), has limited fidelity for uncommon ECG shapes due to the lack of representative power. To better utilize the data and improve data representation, we design two dictionary learning frameworks, the cross-domain joint dictionary learning (XDJDL), and the label-consistent XDJDL (LC-XDJDL), to further improve the ECG inference quality and enrich the PPG-based diagnosis knowledge. Building on the K-SVD technique, the proposed joint dictionary learning frameworks extend the expressive power by optimizing simultaneously a pair of signal dictionaries for PPG and ECG with the transforms to relate their sparse codes and disease information. The proposed models are evaluated with a variety of PPG and ECG morphologies from two benchmark datasets that cover various age groups and disease types. The results show the proposed frameworks achieve better inference performance than previous methods with average Pearson coefficients being 0.88 using XDJDL and 0.92 using LC-XDJDL, suggesting an encouraging potential for ECG screening using PPG based on the proactively learned PPG-ECG relationship. By enabling the dynamic monitoring and analysis of the health status of an individual, the proposed frameworks contribute to the emerging digital twins paradigm for personalized healthcare. 
    more » « less