skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: One Size Does Not Fit All: Uncovering and Exploiting Cross Platform Discrepant APIs in WeChat
The past few years have witnessed a boom of mobile super apps, which are the apps offering multiple services such as e-commerce, e-learning, and e-government via miniapps executed inside. While originally designed for mobile platforms, super apps such as WeChat have also been made available on desktop platforms such as Windows. However, when running on desktop platforms, WeChat experiences differences in some behaviors, which presents opportunities for attacks (e.g., platform fingerprinting attacks). This paper thus aims to systematically identify the potential discrepancies in the APIs of WeChat across platforms and demonstrate how these differences can be exploited by remote attackers or local malicious miniapps. To this end, we present APIDIFF, an automatic tool that generates test cases for each API and identifies execution discrepancies. With APIDIFF, we have identified three sets of discrepant APIs that exhibit existence (109), permission (17), and output (22) discrepancies across platforms and devices, and provided concrete examples of their exploitation. We have responsibly disclosed these vulnerabilities to Tencent and received bug bounties for our findings. These vulnerabilities were ranked as high-severity and some have already been patched.  more » « less
Award ID(s):
2330264
PAR ID:
10514750
Author(s) / Creator(s):
; ;
Publisher / Repository:
USENIX
Date Published:
Journal Name:
USENIX Security Symposium
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A new mobile computing paradigm, dubbed mini-app, has been growing rapidly over the past few years since being introduced by WeChat in 2017. In this paradigm, a host app allows its end-users to install and run mini-apps inside itself, enabling the host app to build an ecosystem around (much like Google Play and Apple AppStore), enrich the host's functionalities, and offer mobile users elevated convenience without leaving the host app. It has been reported that there are over millions of mini-apps in WeChat. However, little information is known about these mini-apps at an aggregated level. In this paper, we present MiniCrawler, the first scalable and open source WeChat mini-app crawler that has indexed over 1,333,308 mini-apps. It leverages a number of reverse engineering techniques to uncover the interfaces and APIs in WeChat for crawling the mini-apps. With the crawled mini-apps, we then measure their resource consumption, API usage, library usage, obfuscation rate, app categorization, and app ratings at an aggregated level. The details of how we develop MiniCrawler and our measurement results are reported in this paper. 
    more » « less
  2. Mobile super apps are revolutionizing mobile computing by offering diverse services through integrated "miniapps'', creating comprehensive ecosystems akin to app stores like Google Play and Apple's App Store. While these platforms, such as WeChat, Alipay, and TikTok, enhance user convenience and functionality, they also raise significant security and privacy concerns due to the vast amounts of user data they handle. In response, the Workshop on Secure and Trustworthy Superapps (SaTS 2024) aims to address these critical issues by fostering collaboration among researchers and practitioners to explore solutions that protect users and enhance security within the super app landscape. 
    more » « less
  3. Increasingly, more and more mobile applications (apps for short) are using the cloud as the back-end, in particular the cloud APIs, for data storage, data analytics, message notification, and monitoring. Unfortunately, we have recently witnessed massive data leaks from the cloud, ranging from personally identifiable information to corporate secrets. In this paper, we seek to understand why such significant leaks occur and design tools to automatically identify them. To our surprise, our study reveals that lack of authentication, misuse of various keys (e.g., normal user keys and superuser keys) in authentication, or misconfiguration of user permissions in authorization are the root causes. Then, we design a set of automated program analysis techniques including obfuscation-resilient cloud API identification and string value analysis, and implement them in a tool called LeakScope to identify the potential data leakage vulnerabilities from mobile apps based on how the cloud APIs are used. Our evaluation with over 1.6 million mobile apps from the Google Play Store has uncovered 15, 098 app servers managed by mainstream cloud providers such as Amazon, Google, and Microsoft that are subject to data leakage attacks. We have made responsible disclosure to each of the cloud service providers, and they have all confirmed the vulnerabilities we have identified and are actively working with the mobile app developers to patch their vulnerable services. 
    more » « less
  4. Increasingly, more and more mobile applications (apps for short) are using the cloud as the back-end, in particular the cloud APIs, for data storage, data analytics, message notification, and monitoring. Unfortunately, we have recently witnessed massive data leaks from the cloud, ranging from personally identifiable information to corporate secrets. In this paper, we seek to understand why such significant leaks occur and design tools to automatically identify them. To our surprise, our study reveals that lack of authentication, misuse of various keys (e.g., normal user keys and superuser keys) in authentication, or misconfiguration of user permissions in authorization are the root causes. Then, we design a set of automated program analysis techniques including obfuscation-resilient cloud API identification and string value analysis, and implement them in a tool called LeakScope to identify the potential data leakage vulnerabilities from mobile apps based on how the cloud APIs are used. Our evaluation with over 1.6 million mobile apps from the Google Play Store has uncovered 15, 098 app servers managed by mainstream cloud providers such as Amazon, Google, and Microsoft that are subject to data leakage attacks. We have made responsible disclosure to each of the cloud service providers, and they have all confirmed the vulnerabilities we have identified and are actively working with the mobile app developers to patch their vulnerable services. 
    more » « less
  5. As a new format of mobile application, mini-programs, which function within a larger app and are built with HTML, CSS, and JavaScript web technology, have become the way to do almost everything in China. Many researchers have done the ecosystem or developing study, while the permission problem has not been investigated yet. In this paper, we present our studies on the permission management of mini-programs and conduct a systematic study on 9 popular mobile host app ecosystems that host over 7 million mini-programs. After testing over 2,580 APIs, we extracted a common abstract model for mini-programs’ permission control and revealed six categories of potential security vulnerabilities due to improper permission management. It is alarming that the current popular mobile app ecosystems (i.e., host apps) under study have at least one security vulnerability due to the mini-programs’ improper permission management. We present the corresponding attack methods to dissect these potential weaknesses further to exploit the discovered vulnerabilities. To prove that the revealed vulnerabilities may cause severe consequences in real-world use, we show three kinds of attacks without privileges or cracking the host apps. We have responsibly disclosed the newly discovered vulnerabilities, and two CVEs were issued. Finally, we put forward systematic suggestions to strengthen the standardization of mini-programs. 
    more » « less