skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High‐Frequency Ground Motions of Earthquakes Correlate With Fault Network Complexity
Abstract Understanding the generation of damaging, high‐frequency ground motions during earthquakes is essential both for fundamental science and for effective hazard preparation. Various theories exist regarding the origin of high‐frequency ground motions, including the standard paradigm linked to slip heterogeneity on the rupture plane, and alternative perspectives associated with fault complexity. To assess these competing hypotheses, we measure ground motion amplitudes in different frequency bands for 3 ≤ M ≤ 5.8 earthquakes in Southern California and compare them to empirical ground motion models. We utilize a Bayesian inference technique called the Integrated Nested Laplace Approximation (INLA) to identify earthquake source regions that produce higher or lower ground motions than expected. Our analysis reveals a strong correlation between fault complexity measurements and the high‐frequency ground motion event terms identified by INLA. These findings suggest that earthquakes on complex faults (or fault networks) lead to stronger‐than‐expected ground motions at high frequencies.  more » « less
Award ID(s):
2146640 2231705
PAR ID:
10514811
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
12
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Fault zones exhibit geometrical complexity and are often surrounded by multiscale fracture networks within their damage zones, potentially influencing rupture dynamics and near-field ground motions. In this study, we investigate the ground-motion characteristics of cascading ruptures across damage zone fracture networks of moderate-size earthquakes (Mw 5.5–6.0) using high-resolution 3D dynamic rupture simulations. Our models feature a listric normal fault surrounded by more than 800 fractures, emulating a major fault and its associated damage zone. We analyze three cases: a cascading rupture propagating within the fracture network (Mw 5.5), a non-cascading main-fault rupture with off-fault fracture slip (Mw 6.0), and a main-fault rupture without a fracture network (Mw 6.0). Cascading ruptures within the fracture network produce distinct ground-motion signatures with enriched high-frequency content, arising from simultaneous slip of multiple fractures and parts of the main fault, resembling source coda-wave-like signatures. This case shows elevated near-field characteristic frequency (fc) and stress drop, approximately an order of magnitude higher than the estimation directly on the fault of the dynamic rupture simulation. The inferred fc of the modeled vertical ground-motion components reflects the complexity of the radiation pattern and rupture directivity of fracture-network cascading earthquakes. We show that this is consistent with observations of strong azimuthal dependence of corner frequency in the 2009–2016 central Apennines, Italy, earthquake, sequence. Simulated ground motions from fracture-network cascading ruptures also show pronounced azimuthal variations in peak ground acceleration (PGA), peak ground velocity, and pseudospectral acceleration, with average PGA nearly double that of the non-cascading cases. Cascading ruptures radiate high-frequency seismic energy, yield nontypical ground-motion characteristics including coda-wave-like signatures, and may result in a significantly higher seismologically inferred stress drop and PGA. Such outcomes emphasize the critical role of fault-zone complexity in affecting rupture dynamics and seismic radiation and have important implications for physics-based seismic hazard assessment. 
    more » « less
  2. Abstract Dynamic rupture simulations generate synthetic waveforms that account for nonlinear source and path complexity. Here, we analyze millions of spatially dense waveforms from 3D dynamic rupture simulations in a novel way to illuminate the spectral fingerprints of earthquake physics. We define a Brune-type equivalent near-field corner frequency (fc) to analyze the spatial variability of ground-motion spectra and unravel their link to source complexity. We first investigate a simple 3D strike-slip setup, including an asperity and a barrier, and illustrate basic relations between source properties and fc variations. Next, we analyze >13,000,000 synthetic near-field strong-motion waveforms generated in three high-resolution dynamic rupture simulations of real earthquakes, the 2019 Mw 7.1 Ridgecrest mainshock, the Mw 6.4 Searles Valley foreshock, and the 1992 Mw 7.3 Landers earthquake. All scenarios consider 3D fault geometries, topography, off-fault plasticity, viscoelastic attenuation, and 3D velocity structure and resolve frequencies up to 1–2 Hz. Our analysis reveals pronounced and localized patterns of elevated fc, specifically in the vertical components. We validate such fc variability with observed near-fault spectra. Using isochrone analysis, we identify the complex dynamic mechanisms that explain rays of elevated fc and cause unexpectedly impulsive, localized, vertical ground motions. Although the high vertical frequencies are also associated with path effects, rupture directivity, and coalescence of multiple rupture fronts, we show that they are dominantly caused by rake-rotated surface-breaking rupture fronts that decelerate due to fault heterogeneities or geometric complexity. Our findings highlight the potential of spatially dense ground-motion observations to further our understanding of earthquake physics directly from near-field data. Observed near-field fc variability may inform on directivity, surface rupture, and slip segmentation. Physics-based models can identify “what to look for,” for example, in the potentially vast amount of near-field large array or distributed acoustic sensing data. 
    more » « less
  3. ABSTRACT Earthquake-induced landslides can record information about the seismic shaking that generated them. In this study, we present new mapping, Light Detection and Ranging-derived roughness dating, and analysis of over 1000 deep-seated landslides from the Puget Lowlands of Washington, U.S.A., to probe the landscape for past Seattle fault earthquake information. With this new landslide inventory, we observe spatial and temporal evidence of landsliding related to the last major earthquake on the Seattle fault ∼1100 yr before present. We find spatial clusters of landslides that correlate with ground motions from recent 3D kinematic models of Seattle fault earthquakes. We also find temporal patterns in the landslide inventory that suggest earthquake-driven increases in landsliding. We compare the spatial and temporal landslide data with scenario-based ground motion models and find stronger evidence of the last major Seattle fault earthquake from this combined analysis than from spatial or temporal patterns alone. We also compare the landslide inventory with ground motions from different Seattle fault earthquake scenarios to determine the ground motion distributions that are most consistent with the landslide record. We find that earthquake scenarios that best match the clustering of ∼1100-year-old landslides produce the strongest shaking within a band that stretches from west to east across central Seattle as well as along the bluffs bordering the broader Puget Sound. Finally, we identify other landslide clusters (at 4.6–4.2 ka, 4.0–3.8 ka, 2.8–2.6 ka, and 2.2–2.0 ka) in the inventory which let us infer potential ground motions that may correspond to older Seattle fault earthquakes. Our method, which combines hindcasting of the surface response to the last major Seattle fault earthquake, using a roughness-aged landslide inventory with forecasts of modeled ground shaking from 3D seismic scenarios, showcases a powerful new approach to gleaning paleoseismic information from landscapes. 
    more » « less
  4. Abstract Soft sediment layers can significantly amplify seismic waves from earthquakes. Large dynamic strains can trigger a nonlinear response of shallow soils with low strength, which is characterized by a shift of resonance frequencies, ground motion deamplification, and in some cases, soil liquefaction. We investigate the response of marine sediments during earthquake ground motions recorded along a fiber‐optic cable offshore the Tohoku region, Japan, with distributed acoustic sensing (DAS). We compute AutoCorrelation Functions (ACFs) of the ground motions from 105 earthquakes in different frequency bands. We detect time delays in the ACF waveforms that are converted to relative velocity changes (dv/v).dv/vdrops, which characterize soil nonlinearity, are observed during the strongest ground motions and exhibit a large variability along the cable. This study demonstrates that DAS can be used to infer the dynamic properties of the shallow Earth with an unprecedented spatial resolution. 
    more » « less
  5. Abstract Supershear earthquakes, propagating faster than the Earth's shear wave velocity, can generate strong ground motion at distances far from the ruptured fault. Despite the hazards associated with these earthquakes, the exact fault properties that govern their occurrence are not well constrained. Although early studies associated supershear ruptures with simple fault geometries, recent dynamic rupture models have revealed a supershear transition mechanism over complex fault geometries such as fault stepovers. Here we present the first observation of a supershear transition on a fault stepover system during the 2017 Mw7.7 Komandorsky Islands earthquake. Using a high‐resolution back‐projection technique, we find that the earthquake's rupture velocity accelerates from 2.1 to 5.0 km/s between two offset faults, demonstrating the viability of a new supershear transition mechanism occurring in nature. Given the fault complexity of the Earth's transform plate boundaries, this result may improve our understanding of supershear rupture processes and their associated hazards. 
    more » « less