skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analysis On How Certain Marine Phytoplankton Species Are Being Affected by Ocean Acidification On the U.S East Coast
Earth’s oceans serve as a large atmospheric reservoir where carbon dioxide is absorbed and stored. In modern years, fossil fuel emissions have caused a large influx of CO₂ into the atmosphere and thus it is being absorbed into the oceans causing ocean acidification. This phenomenon has vast negative impacts, especially on the most abundant organism in the ocean– phytoplankton. Using data from a cruise in 2018, a prominent pH gradient has been mapped along the East Coast of the U.S, with Northeastern waters being more acidic. It is the purpose of this research to investigate how certain phytoplankton species are responding to this pH gradient and changes in their nutrient supplies. Four different species of phytoplankton were chosen from the Long Island Sound, and are currently being tested in varying concentrations of CO₂ (280 ppm, 400 ppm, and 800 ppm) – to mimic the pre industrial, modern, and future CO₂ levels of the Atlantic ocean. With the preliminary results of this experiment, it’s evident that the Diatom taxa is performing best overall, and specifically well in the 280 ppm, because of their unique carbon concentrating mechanisms that allow them to outcompete other phytoplankton in low pCO₂ waters. Future research will include monitoring this ongoing CO₂ experiment as well as testing other species of phytoplankton. It’s imperative to understand how these phytoplankton will react to changes in their environments as harmful algal blooms are becoming more common with climate change.  more » « less
Award ID(s):
2050923
PAR ID:
10514894
Author(s) / Creator(s):
;
Editor(s):
Goes, J
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Proceedings American Geophysical Union
Edition / Version:
Final
Volume:
0
Issue:
0
Page Range / eLocation ID:
1
Subject(s) / Keyword(s):
Marine biology Phytoplankton Ocean acidification
Format(s):
Medium: X Size: 2 MB Other: pdfA
Size(s):
2 MB
Location:
San Francisco, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. Goes, J (Ed.)
    As climate change and carbon dioxide (CO2) emissions continue to alter oceans, it is critical to understand how marine life will respond. Atmospheric CO2 dissolves into ocean water, beginning a series of chemical reactions that lower pH and deplete free carbonate ions—this phenomenon is called ocean acidification (OA). Marine phytoplankton impact ocean chemistry by performing photosynthesis and cycling carbon. They also form the base of marine food webs and are thus implicated in fishery productivity and human food security. As part of the National Oceanic and Atmospheric Administration's Ocean Acidification Program, this research aimed to document the progression of OA and its effects on marine life. The project combined data analysis, remote sensing, and laboratory experiments to understand phytoplankton community change. Data from scientific cruises in 2018 and 2022 were compared to investigate inter-annual variability in phytoplankton distribution, size, and efficiency. These cruises measured chemical and biological indicators, including pH, temperature, and pigments associated with particular plankton taxa. Water samples collected at various depths were imaged to gather phytoplankton cell counts. The findings demonstrate a clear pH gradient along the East Coast, with northern waters being significantly more acidic than southern waters. This difference is primarily driven by increased precipitation, land characteristics, and ocean current dynamics. Biological community structure and the photosynthetic efficiency of the phytoplankton sampled along the coast varied with latitude and time, demonstrating that continued climate change and intensifying acidification will affect phytoplankton distribution and consumption of CO2, with reverberations throughout the ocean and climate systems at large. 
    more » « less
  2. Abstract The oceanic absorption of anthropogenic carbon dioxide (CO2) is expected to continue in the following centuries, but the processes driving these changes remain uncertain. We studied these processes in a simulation of future changes in global climate and the carbon cycle following the RCP8.5 high emission scenario. The simulation shows increasing oceanic uptake of anthropogenic CO2peaking towards the year 2080 and then slowing down but remaining significant in the period up to the year 2300. These multi‐century changes in uptake are dominated by changes in sea‐air CO2fluxes in the tropical and southern oceans. In the tropics, reductions in upwelling and vertical gradients of dissolved carbon will reduce the vertical advection of carbon‐rich thermocline waters, suppressing natural outgassing of CO2. In the Southern Ocean, the upwelling of waters with relatively low dissolved carbon keeps the surface carbon relatively low, enhancing the uptake of CO2in the next centuries. The slowdown in CO2uptake in the subsequent centuries is caused by the decrease in CO2solubility and storage capacity in the ocean due to ocean warming and changes in carbon chemistry. A collapse of the Atlantic Meridional Overturning Circulation (AMOC) predicted for the next century causes a substantial reduction in the uptake of anthropogenic CO2. In sum, predicting multi‐century changes in the global carbon cycle depends on future changes in carbon chemistry along with changes in oceanic and atmospheric circulations in the Southern and tropical oceans, together with a potential collapse of the AMOC. 
    more » « less
  3. null (Ed.)
    In addition to ocean acidification, a significant recent warming trend in Chinese coastal waters has received much attention. However, studies of the combined effects of warming and acidification on natural coastal phytoplankton assemblages here are scarce. We conducted a continuous incubation experiment with a natural spring phytoplankton assemblage collected from the Bohai Sea near Tianjin. Experimental treatments used a full factorial combination of temperature (7 and 11°C) and pCO 2 (400 and 800 ppm) treatments. Results suggest that changes in pCO 2 and temperature had both individual and interactive effects on phytoplankton species composition and elemental stoichiometry. Warming mainly favored the accumulation of picoplankton and dinoflagellate biomass. Increased pCO 2 significantly increased particulate organic carbon to particulate organic phosphorus (C:P) and particulate organic carbon to biogenic silica (C:BSi) ratios, and decreased total diatom abundance; in the meanwhile, higher pCO 2 significantly increased the ratio of centric to pennate diatom abundance. Warming and increased pCO 2 both greatly decreased the proportion of diatoms to dinoflagellates. The highest chlorophyll a biomass was observed in the high pCO 2 , high temperature phytoplankton assemblage, which also had the slowest sinking rate of all treatments. Overall, there were significant interactive effects of increased pCO 2 and warming on dinoflagellate abundance, pennate diatom abundance, diatom vs. dinoflagellates ratio and the centric vs. pennate ratio. These findings suggest that future ocean acidification and warming trends may individually and cumulatively affect coastal biogeochemistry and carbon fluxes through shifts in phytoplankton species composition and sinking rates. 
    more » « less
  4. Abstract Are the oceans turning into deserts? Rising temperature, increasing surface stratification, and decreasing vertical inputs of nutrients are expected to cause an expansion of warm, nutrient deplete ecosystems. Such an expansion is predicted to negatively affect a trio of key ocean biogeochemical features: phytoplankton biomass, primary productivity, and carbon export. However, phytoplankton communities are complex adaptive systems with immense diversity that could render them at least partially resilient to global changes. This can be illustrated by the biology of theProchlorococcus“collective.” Adaptations to counter stress, use of alternative nutrient sources, and frugal resource allocation can allowProchlorococcusto buffer climate‐driven changes in nutrient availability. In contrast, cell physiology is more sensitive to temperature changes. Here, we argue that biogeochemical models need to consider the adaptive potential of diverse phytoplankton communities. However, a full understanding of phytoplankton resilience to future ocean changes is hampered by a lack of global biogeographic observations to test theories. We propose that the resilience may in fact be greater in oligotrophic waters than currently considered with implications for future predictions of phytoplankton biomass, primary productivity, and carbon export. 
    more » « less
  5. Abstract The ocean has absorbed about 25% of the carbon emitted by humans to date. To better predict how much climate will change, it is critical to understand how this ocean carbon sink will respond to future emissions. Here, we examine the ocean carbon sink response to low emission (SSP1-1.9, SSP1-2.6), intermediate emission (SSP2-4.5, SSP5-3.4-OS), and high emission (SSP5-8.5) scenarios in CMIP6 Earth System Models and in MAGICC7, a reduced-complexity climate carbon system model. From 2020–2100, the trajectory of the global-mean sink approximately parallels the trajectory of anthropogenic emissions. With increasing cumulative emissions during this century (SSP5-8.5 and SSP2-4.5), the cumulative ocean carbon sink absorbs 20%–30% of cumulative emissions since 2015. In scenarios where emissions decline, the ocean absorbs an increasingly large proportion of emissions (up to 120% of cumulative emissions since 2015). Despite similar responses in all models, there remains substantial quantitative spread in estimates of the cumulative sink through 2100 within each scenario, up to 50 PgC in CMIP6 and 120 PgC in the MAGICC7 ensemble. We demonstrate that for all but SSP1-2.6, approximately half of this future spread can be eliminated if model results are adjusted to agree with modern observation-based estimates. Considering the spatial distribution of air-sea CO2fluxes in CMIP6, we find significant zonal-mean divergence from the suite of newly-available observation-based constraints. We conclude that a significant portion of future ocean carbon sink uncertainty is attributable to modern-day errors in the mean state of air-sea CO2fluxes, which in turn are associated with model representations of ocean physics and biogeochemistry. Bringing models into agreement with modern observation-based estimates at regional to global scales can substantially reduce uncertainty in future role of the ocean in absorbing anthropogenic CO2from the atmosphere and mitigating climate change. 
    more » « less