skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seasonality of the QBO Impact on Equatorial Clouds
Abstract The Quasi‐Biennial Oscillation (QBO) dominates the interannual variability in the tropical lower stratosphere and is characterized by the descent of alternating easterly and westerly zonal winds. The QBO impact on tropical clouds and convection has received great attention in recent years due to its implications for weather and climate. In this study, a 15‐year record of high vertical resolution cloud observations from CALIPSO and a 50 hPa zonal wind QBO index from ERA5 are used to document the QBO impact on equatorial (10°S–10°N) clouds. Observations from radio occultations, the CERES instrument, and the ERA5 reanalysis are also used to document the QBO impact on temperature, cloud radiative effect (CRE), and zonal wind, respectively. It is shown that the QBO impact on zonal mean equatorial cloud fraction has a strong seasonality. The strongest cloud fraction response to the QBO occurs in boreal spring and early summer, which extends from above the mean tropopause to ∼12.5 km and results in a significant longwave CRE anomaly of 1 W/m2. The seasonality of the QBO impact on cloud fraction is synchronized with the QBO impacts on temperature and zonal wind in the tropical upper troposphere.  more » « less
Award ID(s):
2202812
PAR ID:
10515094
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
128
Issue:
7
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The stratospheric quasi-biennial oscillation (QBO) induces temperature anomalies in the lower stratosphere and tropical tropopause layer (TTL) that are cold when lower-stratospheric winds are easterly and warm when winds are westerly. Recent literature has indicated that these QBO temperature anomalies are potentially important in influencing the tropical troposphere, and particularly in explaining the relationship between the QBO and the Madden–Julian oscillation (MJO). The authors examine the variability of QBO temperature anomalies across several time scales using reanalysis and observational datasets. The authors find that, in boreal winter relative to other seasons, QBO temperature anomalies are significantly stronger (i.e., colder in the easterly phase of the QBO and warmer in the westerly phase of the QBO) on the equator, but weaker off the equator. The equatorial and subtropical changes compensate such that meridional temperature gradients and thus (by thermal wind balance) equatorial zonal wind anomalies do not vary in amplitude as the temperature anomalies do. The same pattern of stronger on-equatorial and weaker off-equatorial QBO temperature anomalies is found on decadal time scales: stronger anomalies are seen for 1999–2019 compared to 1979–99. The causes of these changes to QBO temperature anomalies, as well as their possible relevance to the MJO–QBO relationship, are not known. 
    more » « less
  2. The impact of the quasi‐biennial oscillation (QBO) on tropical convection and precipitation is investigated through nudging experiments using the UK Met Office Hadley Center Unified Model. The model control simulations show robust links between the internally generated QBO and tropical precipitation and circulation. The model zonal wind in the tropical stratosphere was nudged above 90 hPa in atmosphere‐only and coupled ocean‐atmosphere configurations. The convection and precipitation in the atmosphere‐only simulations do not differ between the experiments with and without nudging, which may indicate that SST‐convection coupling is needed for any QBO influence on the tropical lower troposphere and surface. In the coupled experiments, the precipitation and sea‐surface temperature relationships with the QBO phase disappear when nudging is applied. Imposing a realistic QBO‐driven static stability anomaly in the upper‐troposphere lower‐stratosphere is not sufficient to simulate tropical surface impacts. The nudging reduced the influence of the lower troposphere on the upper branch of the Walker circulation, irrespective of the QBO, indicating that the upper tropospheric zonal circulation has been decoupled from the surface by the nudging. These results suggest that grid‐point nudging mutes relevant feedback processes occurring at the tropopause level, including high cloud radiative effects and wave mean flow interactions, which may play a key role in stratospheric‐tropospheric coupling. 
    more » « less
  3. Abstract Recent observations have indicated significant modulation of the Madden–Julian oscillation (MJO) by the phase of the stratospheric quasi-biennial oscillation (QBO) during boreal winter. Composites of the MJO show that upper-tropospheric ice cloud fraction and water vapor anomalies are generally collocated, and that an eastward tilt with height in cloud fraction exists. Through radiative transfer calculations, it is shown that ice clouds have a stronger tropospheric radiative forcing than do water vapor anomalies, highlighting the importance of incorporating upper-tropospheric–lower-stratospheric processes into simple models of the MJO. The coupled troposphere–stratosphere linear model previously developed by the authors is extended by including a mean wind in the stratosphere and a prognostic equation for cirrus clouds, which are forced dynamically and allowed to modulate tropospheric radiative cooling, similar to the effect of tropospheric water vapor in previous formulations. Under these modifications, the model still produces a slow, eastward-propagating mode that resembles the MJO. The sign of zonal mean wind in the stratosphere is shown to control both the upward wave propagation and tropospheric vertical structure of the mode. Under varying stratospheric wind and interactive cirrus cloud radiation, the MJO-like mode has weaker growth rates under stratospheric westerlies than easterlies, consistent with the observed MJO–QBO relationship. These results are directly attributable to an enhanced barotropic mode under QBO easterlies. It is also shown that differential zonal advection of cirrus clouds leads to weaker growth rates under stratospheric westerlies than easterlies. Implications and limitations of the linear theory are discussed. Significance StatementRecent observations have shown that the strength of the Madden–Julian oscillation (MJO), a global-scale envelope of wind and rain that slowly moves eastward in the tropics and dominates global-weather variations on time scales of around a month, is strongly influenced by the direction of the winds in the lower stratosphere, the layer of the atmosphere that lies above where weather occurs. So far, modeling studies have been unable to reproduce this connection in global climate models. The purpose of this study is to investigate the mechanisms through which the stratosphere can modulate the MJO, by using simple theoretical models. In particular, we point to the role that ice clouds high in the atmosphere play in influencing the MJO. 
    more » « less
  4. Abstract The quasi-biennial oscillation (QBO) is the dominant mode of variability in the equatorial stratosphere. It is characterized by alternating descending easterly and westerly jets over a period of approximately 28 months. It has long been known that the QBO interactions with the annual cycle, e.g., through variation in tropical upwelling, lead to variations in the descent rate of the jets and, resultantly, the QBO period. Understanding these interactions, however, has been hindered by the fact that conventional measures of the QBO convolve these interactions. Koopman formalism, derived from dynamical systems, allows one to decompose spatiotemporal datasets (or nonlinear systems) into spatial modes that evolve coherently with distinct frequencies. We use a data-driven approximation of the Koopman operator on zonal-mean zonal wind to find modes that correspond to the annual cycle, the QBO, and the nonlinear interactions between the two. From these modes, we establish a data-driven index for a “pure” QBO that is independent of the annual cycle and investigate how the annual cycle modulates the QBO. We begin with what is already known, quantifying the Holton–Tan effect, a nonlinear interaction between the QBO and the annual cycle of the polar stratospheric vortex. We then use the pure QBO to do something new, quantifying how the annual cycle changes the descent rate of the QBO, revealing annual variations with amplitudes comparable to the 30 m day−1mean descent rate. We compare these results to the annual variation in tropical upwelling and interpret them with a simple model. Significance StatementThe quasi-biennial oscillation (QBO) is a periodic cycle of winds in tropical atmosphere with a period of 28 months. The phase of QBO is known to influence other aspects of the atmosphere, including the polar vortex, but the magnitude of its effects and how it behaves are known to depend on the season. In this study, we use a data-driven method (called a Koopman decomposition) to quantify annual changes in the QBO and investigate their causes. We show that seasonal variations in the stratospheric upwelling play an important but incomplete role. 
    more » « less
  5. Monthly-mean data of ERA-Interim reanalysis, precipitation, outgoing longwave radiation (OLR) and sea surface temperature(SST) are investigated for 40 years (1979-2018) to reveal the modulation of the global monsoon systems by the equatorial quasi-biennial oscillation (QBO), focusing only on the neutral El Niño-Southern Oscillation (ENSO) periods (in total 374 months). First, the climatology of the global monsoon systems is viewed with longitude-latitude plots of the precipitation, its proxies and lower tropospheric circulations for the annual mean and two solstice seasons, together with the composite differences between the two seasons. In addition to seasonal variations of Intertropical Convergence Zones (ITCZs), several regional monsoon systems are well identified with an anti-phase of the annual cycle between the two hemispheres. Precipitation-related quantities (OLR and specific humidity), surface conditions [i.e., mean sea level pressure (MSLP) and SST] and circulation fields related to moist convection systems show fundamental features of the global monsoon systems. After introducing eight QBO phases based on the leading two principal components of the zonal-mean zonal wind variations in the equatorial lower-stratosphere, the statistical significance of the composite difference in the precipitation and tropospheric circulation is evaluated for the opposite QBO phases. The composite differences show significant modulations in some regional monsoon systems, dominated by zonally asymmetric components, with the largest magnitudes for specific QBO-phases corresponding to traditional indices of the equatorial zonal-mean zonal wind at 20 and 50 hPa. Along the equator, significant QBO influence is characterized by the modulation of the Walker circulation over the western Pacific. In middle latitudes during boreal summer, for a specific QBO-phase, statistically significant modulation of low-pressure cyclonic perturbation is obtained over the Northern-Hemisphere western Pacific Ocean associated with statistically significant features of heavier precipitation over the eastern side of the cyclonic perturbation and the opposite lighter precipitation over the western side. During boreal winter, similar significant low-pressure cyclonic perturbations were found over the Northern-Hemisphere eastern Pacific and Atlantic Oceans for specific phases. 
    more » « less