Abstract In this paper, we establish the fully decoupled numerical methods by utilizing scalar auxiliary variable approach for solving Cahn–Hilliard–Darcy system. We exploit the operator splitting technique to decouple the coupled system and Galerkin finite element method in space to construct the fully discrete formulation. The developed numerical methods have the features of second order accuracy, totally decoupling, linearization, and unconditional energy stability. The unconditionally stability of the two proposed decoupled numerical schemes are rigorously proved. Abundant numerical results are reported to verify the accuracy and effectiveness of proposed numerical methods.
more »
« less
IMEX methods for thin-film equations and Cahn–Hilliard equations with variable mobility
We explore a class of splitting schemes employing implicit-explicit (IMEX) time-stepping to achieve accurate and energy-stable solutions for thin-film equations and Cahn-Hilliard models with variable mobility. This splitting method incorporates a linear, constant coefficient implicit step, facilitating efficient computational implementation. We investigate the influence of stabi- lizing splitting parameters on the numerical solution computationally, considering various initial conditions. Furthermore, we generate energy-stability plots for the proposed methods, examin- ing different choices of splitting parameter values and timestep sizes. These methods enhance the accuracy of the original bi-harmonic-modified (BHM) approach, while preserving its energy- decreasing property and achieving second-order accuracy. We present numerical experiments to illustrate the performance of the proposed methods.
more »
« less
- Award ID(s):
- 2008255
- PAR ID:
- 10515150
- Publisher / Repository:
- arXiv:2405.19483
- Date Published:
- Journal Name:
- Computational Materials Science
- Volume:
- 243
- Issue:
- C
- ISSN:
- 0927-0256
- Page Range / eLocation ID:
- 113145
- Subject(s) / Keyword(s):
- Cahn-Hilliard equation thin film equation IMEX time-stepping schemes implicit-explicit methods variable mobility
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this paper, we consider Maxwell’s equations in linear dispersive media described by a single-pole Lorentz model for electronic polarization. We study two classes of commonly used spatial discretizations: finite difference methods (FD) with arbitrary even order accuracy in space and high spatial order discontinuous Galerkin (DG) finite element methods. Both types of spatial discretizations are coupled with second order semi-implicit leap-frog and implicit trapezoidal temporal schemes. By performing detailed dispersion analysis for the semi-discrete and fully discrete schemes, we obtain rigorous quantification of the dispersion error for Lorentz dispersive dielectrics. In particular, comparisons of dispersion error can be made taking into account the model parameters, and mesh sizes in the design of the two types of schemes. This work is a continuation of our previous research on energy-stable numerical schemes for nonlinear dispersive optical media [6,7]. The results for the numerical dispersion analysis of the reduced linear model, considered in the present paper, can guide us in the optimal choice of discretization parameters for the more complicated and nonlinear models. The numerical dispersion analysis of the fully discrete FD and DG schemes, for the dispersive Maxwell model considered in this paper, clearly indicate the dependence of the numerical dispersion errors on spatial and temporal discretizations, their order of accuracy, mesh discretization parameters and model parameters. The results obtained here cannot be arrived at by considering discretizations of Maxwell’s equations in free space. In particular, our results contrast the advantages and disadvantages of using high order FD or DG schemes and leap-frog or trapezoidal time integrators over different frequency ranges using a variety of measuresmore » « less
-
A finite difference numerical scheme is proposed and analyzed for the Cahn-Hilliard-Stokes system with Flory-Huggins energy functional. A convex splitting is applied to the chemical potential, which in turns leads to the implicit treatment for the singular logarithmic terms and the surface diffusion term, and an explicit update for the expansive concave term. The convective term for the phase variable, as well as the coupled term in the Stokes equation, is approximated in a semi-implicit manner. In the spatial discretization, the marker and cell difference method is applied, which evaluates the velocity components, the pressure and the phase variable at different cell locations. Such an approach ensures the divergence-free feature of the discrete velocity, and this property plays an important role in the analysis. The positivity-preserving property and the unique solvability of the proposed numerical scheme are theoretically justified, utilizing the singular nature of the logarithmic term as the phase variable approaches the singular limit values. An unconditional energy stability analysis is standard, as an outcome of the convex-concave decomposition technique. A convergence analysis with accompanying error estimate is provided for the proposed numerical scheme. In particular, a higher order consistency analysis, accomplished by supplementary functions, is performed to ensure the separation properties of numerical solution. In turn, using the approach of rough and refined error estimates, we are able to derive an optimal rate convergence. To conclude, several numerical experiments are presented to validate the theoretical analysis.more » « less
-
Abstract For some polycrystalline materials such as austenitic stainless steel, magnesium, TATB, and HMX, twinning is a crucial deformation mechanism when the dislocation slip alone is not enough to accommodate the applied strain. To predict this coupling effect between crystal plasticity and deformation twinning, we introduce a mathematical model and the corresponding monolithic and operator splitting solvers that couple the crystal plasticity material model with a phase field twining model such that the twinning nucleation and propagation can be captured via an implicit function. While a phase field order parameter is introduced to quantify the twinning induced shear strain and corresponding crystal reorientation, the evolution of the order parameter is driven by the resolved shear stress on the twinning system. To avoid introducing an additional set of slip systems for dislocation slip within the twinning region, we introduce a Lie algebra averaging technique to determine the Schmid tensor throughout the twinning transformation. Three different numerical schemes are proposed to solve the coupled problem, including a monolithic scheme, an alternating minimization scheme, and an operator splitting scheme. Three numerical examples are utilized to demonstrate the capability of the proposed model, as well as the accuracy and computational cost of the solvers.more » « less
-
In this paper, we propose and study first- and second-order (in time) stabilized linear finite element schemes for the incompressible Navier-Stokes (NS) equations. The energy, momentum, and angular momentum conserving (EMAC) formulation has emerged as a promising approach for conserving energy, momentum, and angular momentum of the NS equations, while the exponential scalar auxiliary variable (ESAV) has become a popular technique for designing linear energy-stable numerical schemes. Our method leverages the EMAC formulation and the Taylor-Hood element with grad-div stabilization for spatial discretization. We adopt the implicit-explicit backward differential formulas (BDFs) coupled with a novel stabilized ESAV approach for time stepping. For the solution process, we develop an efficient decoupling technique for the resulting fully-discrete systems so that only one linear Stokes solve is needed at each time step, which is similar to the cost of classic implicit-explicit BDF schemes for the NS equations. Robust optimal error estimates are successfully derived for both velocity and pressure for the two proposed schemes, with Gronwall constants that are particularly independent of the viscosity. Furthermore, it is rigorously shown that the grad-div stabilization term can greatly alleviate the viscosity-dependence of the mesh size constraint, which is required for error estimation when such a term is not present in the schemes. Various numerical experiments are conducted to verify the theoretical results and demonstrate the effectiveness and efficiency of the grad-div and ESAV stabilization strategies and their combination in the proposed numerical schemes, especially for problems with high Reynolds numbers.more » « less
An official website of the United States government

