Abstract Selective attention improves sensory processing of relevant information but can also impact the quality of perception. For example, attention increases visual discrimination performance and at the same time boosts apparent stimulus contrast of attended relative to unattended stimuli. Can attention also lead to perceptual distortions of visual representations? Optimal tuning accounts of attention suggest that processing is biased towards “off-tuned” features to maximize the signal-to-noise ratio in favor of the target, especially when targets and distractors are confusable. Here, we tested whether such tuning gives rise to phenomenological changes of visual features. We instructed participants to select a color among other colors in a visual search display and subsequently asked them to judge the appearance of the target color in a 2-alternative forced choice task. Participants consistently judged the target color to appear more dissimilar from the distractor color in feature space. Critically, the magnitude of these perceptual biases varied systematically with the similarity between target and distractor colors during search, indicating that attentional tuning quickly adapts to current task demands. In control experiments we rule out possible non-attentional explanations such as color contrast or memory effects. Overall, our results demonstrate that selective attention warps the representational geometry of color space, resulting in profound perceptual changes across large swaths of feature space. Broadly, these results indicate that efficient attentional selection can come at a perceptual cost by distorting our sensory experience.
more »
« less
Probabilistic and rich individual working memories revealed by a betting game
Abstract When asked to remember a color, do people remember a point estimate (e.g., a particular shade of red), a point estimate plus an uncertainty estimate, or are memory representations rich probabilistic distributions over feature space? We asked participants to report the color of a circle held in working memory. Rather than collecting a single report per trial, we had participants place multiple bets to create trialwise uncertainty distributions. Bet dispersion correlated with performance, indicating that internal uncertainty guided bet placement. While the first bet was on average the most precisely placed, the later bets systematically shifted the distribution closer to the target, resulting in asymmetrical distributions about the first bet. This resulted in memory performance improvements when averaging across bets, and overall suggests that memory representations contain more information than can be conveyed by a single response. The later bets contained target information even when the first response would generally be classified as a guess or report of an incorrect item, suggesting that such failures are not all-or-none. This paradigm provides multiple pieces of evidence that memory representations are rich and probabilistic. Crucially, standard discrete response paradigms underestimate the amount of information in memory representations.
more »
« less
- Award ID(s):
- 2146988
- PAR ID:
- 10515345
- Publisher / Repository:
- Springer Nature
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Fact-checkers want people to both read and remember their misinformation debunks. Retrieval practice is one way to increase memory, thus multiple-choice quizzes may be a useful tool for fact-checkers. We tested whether exposure to quizzes improved people’s accuracy ratings for fact-checked claims and their memory for specific information within a fact check. Across three experiments, 1551 US-based online participants viewed fact checks (either health- or politics-related) with or without a quiz. Overall, the fact checks were effective, and participants were more accurate in rating the claims after exposure. In addition, quizzes improved participants’ memory for the details of the fact checks, even 1 week later. However, that increased memory did not lead to more accurate beliefs. Participants’ accuracy ratings were similar in the quiz and no-quiz conditions. Multiple-choice quizzes can be a useful tool for increasing memory, but there is a disconnect between memory and belief.more » « less
-
null (Ed.)Previous evidence demonstrated that individuals can recall a target’s location in a search display even if location information is completely task-irrelevant. This finding raises the question: does this ability to automatically encode a single item’s location into a reportable memory trace extend to other aspects of spatial information as well? We tested this question using a paradigm designed to elicit attribute amnesia (Chen & Wyble, 2015a). Participants were initially asked to report the location of a target letter among digits with stimuli arranged to form one of two or four spatial configurations varying randomly across trials. After completing numerous trials that matched their expectations, participants were surprised with a series of unexpected questions probing their memory for various aspects of the display they had just viewed. Participants had a profound inability to report which spatial configuration they had just perceived when the target’s location was not unique to a specific configuration (i.e., orthogonal). Despite being unable to report the most recent configuration, answer choices on the surprise trial were focused around previously seen configurations, rather than novel configurations. Thus, there were clear memories of the set of configurations that had been viewed during the experiment but not of the specific configuration from the most recent trial. This finding helps to set boundary conditions on previous findings regarding the automatic encoding of location information into memory.more » « less
-
Working memory, the brain’s ability to temporarily store and recall information, is a critical part of decision making – but it has its limits. The brain can only store so much information, for so long. Since decisions are not often acted on immediately, information held in working memory ‘degrades’ over time. However, it is unknown whether or not this degradation of information over time affects the accuracy of later decisions. The tactics that people use, knowingly or otherwise, to store information in working memory also remain unclear. Do people store pieces of information such as numbers, objects and particular details? Or do they tend to compute that information, make some preliminary judgement and recall their verdict later? Does the strategy chosen impact people’s decision-making? To investigate, Schapiro et al. devised a series of experiments to test whether the limitations of working memory, and how people store information, affect the accuracy of decisions they make. First, participants were shown an array of colored discs on a screen. Then, either immediately after seeing the disks or a few seconds later, the participants were asked to recall the position of one of the disks they had seen, or the average position of all the disks. This measured how much information degraded for a decision based on multiple items, and how much for a decision based on a single item. From this, the method of information storage used to make a decision could be inferred. Schapiro et al. found that the accuracy of people’s responses worsened over time, whether they remembered the position of each individual disk, or computed their average location before responding. The greater the delay between seeing the disks and reporting their location, the less accurate people’s responses tended to be. Similarly, the more disks a participant saw, the less accurate their response became. This suggests that however people store information, if working memory reaches capacity, decision-making suffers and that, over time, stored information decays. Schapiro et al. also noticed that participants remembered location information in different ways depending on the task and how many disks they were shown at once. This suggests people adopt different strategies to retain information momentarily. In summary, these findings help to explain how people process and store information to make decisions and how the limitations of working memory impact their decision-making ability. A better understanding of how people use working memory to make decisions may also shed light on situations or brain conditions where decision-making is impaired.more » « less
-
Wherever you look you are likely to see people on their phones, noses inches from the screen, browsing the internet, and especially spending time on social media. If you have used social media before, you know you can “like” posts, share them with friends, comment on them, and respond to what others have said. How do our brains remember social media? Do we remember social media posts better if we interact with them in some way? To study this, we asked people to view real Instagram posts and comment on some of them. Later, we tested their memory for these posts. We found that people were much more likely to remember the posts that they commented on. These results are important to consider when using social media. When we actively engage with social media, it is more likely to stick in memory, so we may need to choose wisely what we interact with to keep ourselves healthy.more » « less
An official website of the United States government

