We study the computational efficiency of several nudging data assimilation algorithms for the 2D magnetohydrodynamic equations, using varying amounts and types of data. We find that the algorithms work with much less resolution in the data than required by the rigorous estimates in [7]. We also test other abridged nudging algorithms to which the analytic techniques in [7] do not seem to apply. These latter tests indicate, in particular, that velocity data alone is sufficient for synchronization with a chaotic reference solution, while magnetic data alone is not. We demonstrate that a new nonlinear nudging algorithm, which is adaptive in both time and space, synchronizes at a super exponential rate. [7] A. Biswas, J. Hudson, A. Larios and Y. Pei, Continuous data assimilation for the 2D magnetohydrodynamic equations using one component of the velocity and magnetic fields, Asymptot. Anal., 108 (2018), 1-43.
more »
« less
Nonlinear continuous data assimilation
We introduce three new nonlinear continuous data assimilation algorithms. These models are compared with the linear continuous data assimilation algorithm introduced by Azouani, Olson, and Titi (AOT). As a proof-of-concept for these models, we computationally investigate these algorithms in the context of the 1D Kuramoto-Sivashinsky equations. We observe that the nonlinear models experience super-exponential convergence in time, and converge to machine precision significantly faster than the linear AOT algorithm in our tests. For both simplicity and completeness, we provide the key analysis of the exponential-in-time convergence in the linear case.
more »
« less
- Award ID(s):
- 2206741
- PAR ID:
- 10515601
- Publisher / Repository:
- Evolution Equations and Control Theory
- Date Published:
- Journal Name:
- Evolution Equations and Control Theory
- Volume:
- 13
- Issue:
- 2
- ISSN:
- 2163-2480
- Page Range / eLocation ID:
- 329 to 348
- Subject(s) / Keyword(s):
- Nonlinear data assimilation, Azouani-Olson-Titi, feedback control, Kuramoto-Sivashinsky equation, nudging
- Format(s):
- Medium: X Other: pdf
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Nonlinear differential equations model diverse phenomena but are notoriously difficult to solve. While there has been extensive previous work on efficient quantum algorithms for linear differential equations, the linearity of quantum mechanics has limited analogous progress for the nonlinear case. Despite this obstacle, we develop a quantum algorithm for dissipative quadratic n-dimensional ordinary differential equations. Assuming R < 1 , where R is a parameter characterizing the ratio of the nonlinearity and forcing to the linear dissipation, this algorithm has complexity T 2 q poly ( log T , log n , log 1 / ϵ ) / ϵ , where T is the evolution time, ϵ is the allowed error, and q measures decay of the solution. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in T. While exponential decay precludes efficiency, driven equations can avoid this issue despite the presence of dissipation. Our algorithm uses the method of Carleman linearization, for which we give a convergence theorem. This method maps a system of nonlinear differential equations to an infinite-dimensional system of linear differential equations, which we discretize, truncate, and solve using the forward Euler method and the quantum linear system algorithm. We also provide a lower bound on the worst-case complexity of quantum algorithms for general quadratic differential equations, showing that the problem is intractable for R ≥ 2 . Finally, we discuss potential applications, showing that the R < 1 condition can be satisfied in realistic epidemiological models and giving numerical evidence that the method may describe a model of fluid dynamics even for larger values of R.more » « less
-
We study a nonlinear-nudging modification of the Azouani–Olson–Titi continuous data assimilation (downscaling) algorithm for the 2D incompressible Navier–Stokes equations. We give a rigorous proof that the nonlinear-nudging system is globally well posed and, moreover, that its solutions converge to the true solution exponentially fast in time. Furthermore, we also prove that once the error has decreased below a certain order one threshold, the convergence becomes double exponentially fast in time, up until a precision determined by the sparsity of the observed data. In addition, we demonstrate the applicability of the analytical and sharpness of the results computationally.more » « less
-
We consider an in-network optimal resource allocation problem in which a group of agents interacting over a connected graph want to meet a demand while minimizing their collective cost. The contribution of this paper is to design a distributed continuous-time algorithm for this problem inspired by a recently developed first-order transformed primal-dual method. The solution applies to cluster-based setting where each agent may have a set of subagents, and its local cost is the sum of the cost of these subagents. The proposed algorithm guarantees an exponential convergence for strongly convex costs and asymptotic convergence for convex costs. Exponential convergence when the local cost functions are strongly convex is achieved even when the local gradients are only locally Lipschitz. For convex local cost functions, our algorithm guarantees asymptotic convergence to a point in the minimizer set. Through numerical examples, we show that our proposed algorithm delivers a faster convergence compared to existing distributed resource allocation algorithms.more » « less
-
We consider a class of nonsmooth convex composite optimization problems, where the objective function is given by the sum of a continuously differentiable convex term and a potentially non-differentiable convex regularizer. In [1], the authors introduced the proximal augmented Lagrangian method and derived the resulting continuous-time primal-dual dynamics that converge to the optimal solution. In this paper, we extend these dynamics from continuous to discrete time via the forward Euler discretization. We prove explicit bounds on the exponential convergence rates of our proposed algorithm with a sufficiently small step size. Since a larger step size can improve the convergence speed, we further develop a linear matrix inequality (LMI) condition which can be numerically solved to provide rate certificates with general step size choices. In addition, we prove that a large range of step size values can guarantee exponential convergence. We close the paper by demonstrating the performance of the proposed algorithm via computational experiments.more » « less
An official website of the United States government

