skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effects of strong capacitive coupling between meta-atoms in rf SQUID metamaterials
Abstract We consider, for the first time, the effects of strong capacitive and inductive coupling between radio frequency superconducting quantum interference devices (rf SQUIDs) in an overlapping metamaterial geometry when driven by rf flux at and near their self-resonant frequencies. The equations of motion for the gauge-invariant phases on the Josephson junctions in each SQUID are set up and solved. Our model accounts for the high-frequency displacement currents through capacitive overlap between the wiring of SQUID loops. We begin by modeling two overlapping SQUIDs and studying the response in both the linear and nonlinear high-frequency driving limits. By exploring a sequence of more and more complicated arrays, the formalism is eventually extended to the N × N × 2 overlapping metamaterial array, where we develop an understanding of the many ( 8 N 2 8 N + 3 ) resulting resonant modes in terms of three classes of resonances. The capacitive coupling gives rise to qualitatively new self-resonant responses of rf SQUID metamaterials, and is demonstrated through analytical theory, numerical modeling, and experiment in the 10–30 GHz range on capacitively and inductively coupled rf SQUID metamaterials.  more » « less
Award ID(s):
2004386
PAR ID:
10515663
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Superconductor Science and Technology
Volume:
37
Issue:
7
ISSN:
0953-2048
Format(s):
Medium: X Size: Article No. 075023
Size(s):
Article No. 075023
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Introduction: We present an extensive theoretical investigation of the electron impact excitation of doubly-ionized titanium (Ti III) to meet the needs of spectral analysis and plasma modeling. OBJECTIVES: The main objective of this work is to extend the currently scarce database of both structure and collision data for Ti III. METHODS: The calculation was performed in the close-coupling approximation using theB-splineR-matrix method. The multi-configuration Hartree–Fock method in combination withB-spline configuration interaction expansions and the non-orthogonal orbitals technique is employed for accurate descriptions of the target wave functions and adequate accounts of the various interactions between the target states. Relativistic effects are treated at the semi-relativistic Breit-Pauli approximation level. RESULTS: The present close-coupling expansion includes 138 fine-structure levels of Ti III belonging to the 3 d 2 , 4 s 2 , 4 s 4 p , 3 d 4 l ( l = 0 3 ), 3 d 5 l ( l = 0 3 ), 3 d 6 s , and 3 d 6 p configurations. Comprehensive sets of radiative and electron collisional data are reported for all of the possible transitions between the 138 fine-structure levels. Thermally averaged collision strengths are determined using a Maxwellian distribution for a wide range of temperatures from 10 2 K to 10 5 K. The accuracy of the calculated radiative parameters is validated by comparing with available values from the NIST database and previous literature. CONCLUSION: Given the lack of sufficient currently available experimental and theoretical data, the electron impact excitation cross sections of the Ti III fine-structure levels presented here are systematic, extensive, and internally consistent, thus making them suitable for many modeling applications. 
    more » « less
  2. Abstract A test of lepton flavor universality in B ± K ± μ + μ and B ± K ± e + e decays, as well as a measurement of differential and integrated branching fractions of a nonresonant B ± K ± μ + μ decay are presented. The analysis is made possible by a dedicated data set of proton-proton collisions at s = 13 TeV recorded in 2018, by the CMS experiment at the LHC, using a special high-rate data stream designed for collecting about 10 billion unbiased b hadron decays. The ratio of the branching fractions B ( B ± K ± μ + μ ) to B ( B ± K ± e + e ) is determined from the measured double ratio R ( K ) of these decays to the respective branching fractions of the B ± J / ψ K ± with J / ψ μ + μ and e + e decays, which allow for significant cancellation of systematic uncertainties. The ratio R ( K ) is measured in the range 1.1 < q 2 < 6.0 GeV 2 , whereqis the invariant mass of the lepton pair, and is found to be R ( K ) = 0.78 0.23 + 0.47 , in agreement with the standard model expectation R ( K ) 1 . This measurement is limited by the statistical precision of the electron channel. The integrated branching fraction in the sameq2range, B ( B ± K ± μ + μ ) = ( 12.42 ± 0.68 ) × 10 8 , is consistent with the present world-average value and has a comparable precision. 
    more » « less
  3. Abstract A search for resonances in top quark pair ( t t ) production in final states with two charged leptons and multiple jets is presented, based on proton–proton collision data collected by the CMS experiment at the CERN LHC at s = 13 TeV , corresponding to 138 fb−1. The analysis explores the invariant mass of the t t system and two angular observables that provide direct access to the correlation of top quark and antiquark spins. A significant excess of events is observed near the kinematic t t threshold compared to the non-resonant production predicted by fixed-order perturbative quantum chromodynamics (pQCD). The observed enhancement is consistent with the production of a color-singlet pseudoscalar ( 1 S 0 [ 1 ] ) quasi-bound toponium state, as predicted by non-relativistic quantum chromodynamics. Using a simplified model for 1 S 0 [ 1 ] toponium, the cross section of the excess above the pQCD prediction is measured to be 8.8 1.4 + 1.2 pb
    more » « less
  4. The Brillouin sphere is defined as the smallest sphere, centered at the origin of the geocentric coordinate system, that incorporates all the condensed matter composing the planet. The Brillouin sphere touches the Earth at a single point, and the radial line that begins at the origin and passes through that point is called the singular radial line. For about 60 years there has been a persistent anxiety about whether or not a spherical harmonic (SH) expansion of the external gravitational potential,V, will converge beneath the Brillouin sphere. Recently, it was proven that the probability of such convergence is zero. One of these proofs provided an asymptotic relation, called Costin’s formula, for the upper bound,EN, on the absolute value of the prediction error,eN, of a SH series model, V N ( θ , λ , r ) , truncated at some maximum degree, N = n max . When the SH series is restricted to (or projected onto) a particular radial line, it reduces to a Taylor series (TS) in 1 / r . Costin’s formula is E N B N b ( R / r ) N , whereRis the radius of the Brillouin sphere. This formula depends on two positive parameters:b, which controls the decay of error amplitude as a function ofNwhenris fixed, and a scale factorB. We show here that Costin’s formula derives from a similar asymptotic relation for the upper bound,Anon the absolute value of the TS coefficients,an, for the same radial line. This formula, A n K n k , depends on degree,n, and two positive parameters,kandK, that are analogous tobandB. We use synthetic planets, for which we can compute the potential,V, and also the radial component of gravitational acceleration, g r = V / r , to hundreds of significant digits, to validate both of these asymptotic formulas. Let superscriptVrefer to asymptotic parameters associated with the coefficients and prediction errors for gravitational potential, and superscriptgto the coefficients and predictions errors associated withgr. For polyhedral planets of uniform density we show that b V = k V = 7 / 2 and b g = k g = 5 / 2 almost everywhere. We show that the frequency of oscillation (around zero) of the TS coefficients and the series prediction errors, for a given radial line, is controlled by the geocentric angle,α, between that radial line and the singular radial line. We also derive useful identities connecting K V , B V , K g , andBg. These identities are expressed in terms of quotients of the various scale factors. The only other quantities involved in these identities areαandR. The phenomenology of ‘series divergence’ and prediction error (whenr < R) can be described as a function of the truncation degree,N, or the depth,d, beneath the Brillouin sphere. For a fixed r R , asNincreases from very low values, the upper error boundENshrinks until it reaches its minimum (best) value whenNreaches some particular or optimum value, N opt . When N > N opt , prediction error grows asNcontinues to increase. Eventually, when N N opt , prediction errors increase exponentially with risingN. If we fix the value ofNand allow R / r to vary, then we find that prediction error in free space beneath the Brillouin sphere increases exponentially with depth,d, beneath the Brillouin sphere. Because b g = b V 1 everywhere, divergence driven prediction error intensifies more rapidly forgrthan forV, both in terms of its dependence onNandd. If we fix bothNandd, and focus on the ‘lateral’ variations in prediction error, we observe that divergence and prediction error tend to increase (as doesB) as we approach high-amplitude topography. 
    more » « less
  5. Abstract We analyze an optical atomic clock using two-photon 5 S 1 / 2 4 D J transitions in rubidium. Four one- and two-color excitation schemes to probe the 4 D 3 / 2 and 4 D 5 / 2 fine-structure states are considered in detail. We compare key characteristics of Rb 4 D J and 5 D 5 / 2 two-photon clocks. The 4 D J clock features a high signal-to-noise ratio due to two-photon decay at favorable wavelengths, low dc electric and magnetic susceptibilities, and minimal black-body shifts. Ac Stark shifts from the clock interrogation lasers are compensated by two-color Rabi-frequency matching. We identify a ‘magic’ wavelength near 1060 nm, which allows for in-trap, Doppler-free clock-transition interrogation with lattice-trapped cold atoms. From our analysis of clock statistics and systematics, we project a quantum-noise-limited relative clock stability at the 10 13 / τ ( s ) -level, with integration timeτin seconds, and a relative accuracy of 10 13 . We describe a potential architecture for implementing the proposed clock using a single telecom clock laser at 1550 nm, which is conducive to optical communication and long-distance clock comparisons. Our work could be of interest in efforts to realize small and portable Rb clocks and in high-precision measurements of atomic properties of Rb 4 D J -states. 
    more » « less