skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectral reordering for faster elasticity simulations
Abstract We present a novel method for faster physics simulations of elastic solids. Our key idea is to reorder the unknown variables according to the Fiedler vector (i.e., the second-smallest eigenvector) of the combinatorial Laplacian. It is well known in the geometry processing community that the Fiedler vector brings together vertices that are geometrically nearby, causing fewer cache misses when computing differential operators. However, to the best of our knowledge, this idea has not been exploited to accelerate simulations of elastic solids which require an expensive linear (or non-linear) system solve at every time step. The cost of computing the Fiedler vector is negligible, thanks to an algebraic Multigrid-preconditioned Conjugate Gradients (AMGPCG) solver. We observe that our AMGPCG solver requires approximately 1 s for computing the Fiedler vector for a mesh with approximately 50Kvertices or 100Ktetrahedra. Our method provides a speed-up between$$10\%$$ 10 % –$$30\%$$ 30 % at every time step, which can lead to considerable savings, noting that even modest simulations of elastic solids require at least 240 time steps. Our method is easy to implement and can be used as a plugin for speeding up existing physics simulators for elastic solids, as we demonstrate through our experiments using the Vega library and the ADMM solver, which use different algorithms for elasticity.  more » « less
Award ID(s):
2312220 2238955
PAR ID:
10515691
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The Visual Computer
Volume:
40
Issue:
7
ISSN:
0178-2789
Format(s):
Medium: X Size: p. 5067-5077
Size(s):
p. 5067-5077
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Given graph$$G=(V,E)$$ G = ( V , E ) with vertex setVand edge setE, the maxk-cut problem seeks to partition the vertex setVinto at mostksubsets that maximize the weight (number) of edges with endpoints in different parts. This paper proposes a graph folding procedure (i.e., a procedure that reduces the number of the vertices and edges of graphG) for the weighted maxk-cut problem that may help reduce the problem’s dimensionality. While our theoretical results hold for any$$k \ge 2$$ k 2 , our computational results show the effectiveness of the proposed preprocessonlyfor$$k=2$$ k = 2 and on two sets of instances. Furthermore, we observe that the preprocess improves the performance of a MIP solver on a set of large-scale instances of the max cut problem. 
    more » « less
  2. Abstract For a given material,controllable deformationsare those deformations that can be maintained in the absence of body forces and by applying only boundary tractions. For a given class of materials,universal deformationsare those deformations that are controllable for any material within the class. In this paper, we characterize the universal deformations in compressible isotropic implicit elasticity defined by solids whose constitutive equations, in terms of the Cauchy stress$$\varvec{\sigma }$$ σ and the left Cauchy-Green strain$$\textbf{b}$$ b , have the implicit form$$\varvec{\textsf{f}}(\varvec{\sigma },\textbf{b})=\textbf{0}$$ f ( σ , b ) = 0 . We prove that universal deformations are homogeneous. However, an important observation is that, unlike Cauchy (and Green) elasticity, not every homogeneous deformation is constitutively admissible for a given implicit-elastic solid. In other words, the set of universal deformations is material-dependent, yet it remains a subset of homogeneous deformations. 
    more » « less
  3. Abstract Given a prime powerqand$$n \gg 1$$ n 1 , we prove that every integer in a large subinterval of the Hasse–Weil interval$$[(\sqrt{q}-1)^{2n},(\sqrt{q}+1)^{2n}]$$ [ ( q - 1 ) 2 n , ( q + 1 ) 2 n ] is$$\#A({\mathbb {F}}_q)$$ # A ( F q ) for some ordinary geometrically simple principally polarized abelian varietyAof dimensionnover$${\mathbb {F}}_q$$ F q . As a consequence, we generalize a result of Howe and Kedlaya for$${\mathbb {F}}_2$$ F 2 to show that for each prime powerq, every sufficiently large positive integer is realizable, i.e.,$$\#A({\mathbb {F}}_q)$$ # A ( F q ) for some abelian varietyAover$${\mathbb {F}}_q$$ F q . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse–Weil interval. A separate argument determines, for fixedn, the largest subinterval of the Hasse–Weil interval consisting of realizable integers, asymptotically as$$q \rightarrow \infty $$ q ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if$$q \le 5$$ q 5 , then every positive integer is realizable, and for arbitraryq, every positive integer$$\ge q^{3 \sqrt{q} \log q}$$ q 3 q log q is realizable. 
    more » « less
  4. Abstract We introduce partitioned matching games as a suitable model for international kidney exchange programmes, where in each round the total number of available kidney transplants needs to be distributed amongst the participating countries in a “fair” way. A partitioned matching game (N, v) is defined on a graph$$G=(V,E)$$ G = ( V , E ) with an edge weightingwand a partition$$V=V_1 \cup \dots \cup V_n$$ V = V 1 V n . The player set is$$N = \{ 1, \dots , n\}$$ N = { 1 , , n } , and player$$p \in N$$ p N owns the vertices in$$V_p$$ V p . The valuev(S) of a coalition $$S \subseteq N$$ S N is the maximum weight of a matching in the subgraph ofGinduced by the vertices owned by the players in S. If$$|V_p|=1$$ | V p | = 1 for all$$p\in N$$ p N , then we obtain the classical matching game. Let$$c=\max \{|V_p| \; |\; 1\le p\le n\}$$ c = max { | V p | | 1 p n } be the width of (N, v). We prove that checking core non-emptiness is polynomial-time solvable if$$c\le 2$$ c 2 but co--hard if$$c\le 3$$ c 3 . We do this via pinpointing a relationship with the known class ofb-matching games and completing the complexity classification on testing core non-emptiness forb-matching games. With respect to our application, we prove a number of complexity results on choosing, out of possibly many optimal solutions, one that leads to a kidney transplant distribution that is as close as possible to some prescribed fair distribution. 
    more » « less
  5. Abstract Given$$g \in \mathbb N \cup \{0, \infty \}$$ g N { 0 , } , let$$\Sigma _g$$ Σ g denote the closed surface of genusgwith a Cantor set removed, if$$g<\infty $$ g < ; or the blooming Cantor tree, when$$g= \infty $$ g = . We construct a family$$\mathfrak B(H)$$ B ( H ) of subgroups of$${{\,\textrm{Map}\,}}(\Sigma _g)$$ Map ( Σ g ) whose elements preserve ablock decompositionof$$\Sigma _g$$ Σ g , andeventually like actlike an element ofH, whereHis a prescribed subgroup of the mapping class group of the block. The group$$\mathfrak B(H)$$ B ( H ) surjects onto an appropriate symmetric Thompson group of Farley–Hughes; in particular, it answers positively. Our main result asserts that$$\mathfrak B(H)$$ B ( H ) is of type$$F_n$$ F n if and only ifHis. As a consequence, for every$$g\in \mathbb N \cup \{0, \infty \}$$ g N { 0 , } and every$$n\ge 1$$ n 1 , we construct a subgroup$$G <{{\,\textrm{Map}\,}}(\Sigma _g)$$ G < Map ( Σ g ) that is of type$$F_n$$ F n but not of type$$F_{n+1}$$ F n + 1 , and which contains the mapping class group of every compact surface of genus$$\le g$$ g and with non-empty boundary. 
    more » « less