skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ancient solutions and translators of Lagrangian mean curvature flow
Abstract Suppose that ℳ is an almost calibrated, exact, ancient solution of Lagrangian mean curvature flow in$$\mathbf {C} ^{n}$$ C n . We show that if ℳ has a blow-down given by the static union of two Lagrangian subspaces with distinct Lagrangian angles that intersect along a line, then ℳ is a translator. In particular in$$\mathbf {C} ^{2}$$ C 2 , all almost calibrated, exact, ancient solutions of Lagrangian mean curvature flow with entropy less than 3 are special Lagrangian, a union of planes, or translators.  more » « less
Award ID(s):
2306233
PAR ID:
10515702
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Publications mathématiques de l'IHÉS
ISSN:
0073-8301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We show that the mean curvature flow of generic closed surfaces in$$\mathbb{R}^{3}$$ R 3 avoids asymptotically conical and non-spherical compact singularities. We also show that the mean curvature flow of generic closed low-entropy hypersurfaces in$$\mathbb{R}^{4}$$ R 4 is smooth until it disappears in a round point. The main technical ingredient is a long-time existence and uniqueness result for ancient mean curvature flows that lie on one side of asymptotically conical or compact shrinking solitons. 
    more » « less
  2. Abstract We prove Ilmanen’s resolution of point singularities conjecture by establishing short-time smoothness of the level set flow of a smooth hypersurface with isolated conical singularities. This shows how the mean curvature flow evolves through asymptotically conical singularities. Precisely, we prove that the level set flow of a smooth hypersurface$$M^{n}\subset \mathbb{R}^{n+1}$$ M n R n + 1 ,$$2\leq n\leq 6$$ 2 n 6 , with an isolated conical singularity is modeled on the level set flow of the cone. In particular, the flow fattens (instantaneously) if and only if the level set flow of the cone fattens. 
    more » « less
  3. Abstract The skew mean curvature flow is an evolution equation forddimensional manifolds embedded in$${{\mathbb {R}}}^{d+2}$$ R d + 2 (or more generally, in a Riemannian manifold). It can be viewed as a Schrödinger analogue of the mean curvature flow, or alternatively as a quasilinear version of the Schrödinger Map equation. In this article, we prove small data local well-posedness in low-regularity Sobolev spaces for the skew mean curvature flow in dimension$$d\ge 4$$ d 4
    more » « less
  4. Abstract We find examples of cohomogeneity one metrics on$$S^4$$ S 4 and$$\mathbb {C}P^2$$ C P 2 with positive sectional curvature that lose this property when evolved via Ricci flow. These metrics are arbitrarily small perturbations of Grove–Ziller metrics with flat planes that become instantly negatively curved under Ricci flow. 
    more » « less
  5. Abstract We obtain new optimal estimates for the$$L^{2}(M)\to L^{q}(M)$$ L 2 ( M ) L q ( M ) ,$$q\in (2,q_{c}]$$ q ( 2 , q c ] ,$$q_{c}=2(n+1)/(n-1)$$ q c = 2 ( n + 1 ) / ( n 1 ) , operator norms of spectral projection operators associated with spectral windows$$[\lambda ,\lambda +\delta (\lambda )]$$ [ λ , λ + δ ( λ ) ] , with$$\delta (\lambda )=O((\log \lambda )^{-1})$$ δ ( λ ) = O ( ( log λ ) 1 ) on compact Riemannian manifolds$$(M,g)$$ ( M , g ) of dimension$$n\ge 2$$ n 2 all of whose sectional curvatures are nonpositive or negative. We show that these two different types of estimates are saturated on flat manifolds or manifolds all of whose sectional curvatures are negative. This allows us to classify compact space forms in terms of the size of$$L^{q}$$ L q -norms of quasimodes for each Lebesgue exponent$$q\in (2,q_{c}]$$ q ( 2 , q c ] , even though it is impossible to distinguish between ones of negative or zero curvature sectional curvature for any$$q>q_{c}$$ q > q c
    more » « less