skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shifting groundwater fluxes in bedrock fractures: Evidence from stream water radon and water isotopes
Geologic features (e.g., fractures and alluvial fans) can play an important role in the locations and volumes of groundwater discharge and degree of groundwater-surface water (GW-SW) interactions. However, the role of these features in controlling GW-SW dynamics and streamflow generation processes are not well constrained. GW-SW interactions and streamflow generation processes are further complicated by variability in precipitation inputs from summer and fall monsoon rains, as well as declines in snowpack and changing melt dynamics driven by warming temperatures. Using high spatial and temporal resolution radon and water stable isotope sampling and a 1D groundwater flux model, we evaluated how groundwater contributions and GW-SW interactions varied along a stream reach impacted by fractures (fractured-zone) and downstream of the fractured hillslope (non- fractured zone) in Coal Creek, a Colorado River headwater stream affected by summer monsoons. During early summer, groundwater contributions from the fractured zone were high, but declined throughout the summer. Groundwater contributions from the non-fractured zone were constant throughout the summer and became proportionally more important later in the summer. We hypothesize that groundwater in the non-fractured zone is dominantly sourced from a high-storage alluvial fan at the base of a tributary that is connected to Coal Creek throughout the summer and provides consistent groundwater influx. Water isotope data revealed that Coal Creek responds quickly to incoming precipitation early in the summer, and summer precipitation becomes more important for streamflow generation later in the summer. We quantified the change in catchment dynamic storage and found it negatively related to stream water isotope values, and positively related to modeled groundwater discharge and the ratio of fractured zone to non-fractured zone groundwater. We interpret these relationships as declining hydrologic connectivity throughout the summer leading to late summer streamflow supported predominantly by shallow flow paths, with variable response to drying from geologic features based on their storage. As groundwater becomes more important for sustaining summer flows, quantifying local geologic controls on groundwater inputs and their response to variable moisture conditions may become critical for accurate predictions of streamflow.  more » « less
Award ID(s):
2012796
PAR ID:
10515824
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier Journal of Hydrology
Date Published:
Journal Name:
Journal of Hydrology
Volume:
635
Issue:
C
ISSN:
0022-1694
Page Range / eLocation ID:
131202
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The radon isotope and stable water isotope data for Coal Creek Watershed, Colorado, consists of d2H, d18O, and 222Rn values from samples collected at 8 stream location along Coal Creek, samples from 7 groundwater springs within the watershed, and precipitation isotope samples collected by Next Generation Water Observing System (NGWOS) from a collector within the watershed. All stream and spring samples were collected between June and October, 2021, and precipitation isotope samples were collected between November 2020 and September 2021. These data were collected to evaluate how groundwater contributions to Coal Creek originating from a fractured hillslope and alluvial fan respond to summer monsoon rains and seasonal drying. Understanding of groundwater-surface water interactions in montane systems in critical for the future of water availability in the Western US as groundwater contributions are expected to become more important for sustaining summer stream flows. This data package contains: (1) a csv of all radon samples; (2) a csv of all stream and spring isotope samples; (3) a csv of precipitation isotope samples; and (4) a csv of locations for each sampling site. The dataset additionally includes a file-level metadata (flmd.csv) file that lists each file contained in the dataset with associated metadata; and a data dictionary (dd.csv) file that contains column/row headers used throughout the files along with a definition, units, and data type. 
    more » « less
  2. Understanding how diverse headwater streams contribute water downstream is critical for accurate modelling of seasonal flow dynamics in larger systems. This study investigated how headwater catchments, with diverse subsurface storage, influence downstream flows within Lookout Creek—a 62 km2, 5th‐order catchment in the rain‐snow transition zone in western Oregon, USA. We analysed one year of hydrometric and water stable isotope data collected at 10 stream locations, complemented by a decade of precipitation isotopic data. As expected, isotopic data revealed that most of the streamflow was sourced from large fall and winter storms. Generally, stream isotope ratios decrease with elevation. However, some streams had higher isotopic values than expected, reflecting the influence of isotopically heavy storms and relatively low storage. Other streams that tended to have low flow variability in response to precipitation inputs had lower isotopic values, indicating higher elevation water sources than their topographic watershed boundaries. Both hydrometric data and water isotope‐based end‐member mixing models suggest storage differences among headwater catchments influenced the seasonal water contributions from tributaries. Most notably, the contributions of Cold and Longer Creeks, which occupy less than 10% of the Lookout Creek drainage area, sustain up to 50% of the streamflow in the summer. These catchments have high storage and high groundwater contributions, as evidenced by flat flow duration curves. Finally, our data suggest that geologic variability and geomorphic complexity (presence of earthflows and landslides) can be indicators of storage that dramatically influence water movement through the critical zone, the variation in streamflow, and the response of streams to precipitation events. Heterogeneity in headwater catchment storage is key to understanding flow dynamics in mountainous regions and the response of streams to changes in climate and other disturbances. 
    more » « less
  3. ABSTRACT Hydrologic connectivity is defined as the connection among stores of water within a watershed and controls the flux of water and solutes from the subsurface to the stream. Hydrologic connectivity is difficult to quantify because it is goverened by heterogeniety in subsurface storage and permeability and responds to seasonal changes in precipitation inputs and subsurface moisture conditions. How interannual climate variability impacts hydrologic connectivity, and thus stream flow generation and chemistry, remains unclear. Using a rare, four‐year synoptic stream chemistry dataset, we evaluated shifts in stream chemistry and stream flow source of Coal Creek, a montane, headwater tributary of the Upper Colorado River. We leveraged compositional principal component analysis and end‐member mixing to evaluate how seasonal and interannual variation in subsurface moisture conditions impacts stream chemistry. Overall, three main findings emerged from this work. First, three geochemically distinct end members were identified that constrained stream flow chemistry: reach inflows, and quick and slow flow groundwater contributions. Reach inflows were impacted by historic base and precious metal mine inputs. Bedrock fractures facilitated much of the transport of quick flow groundwater and higher‐storage subsurface features (e.g., alluvial fans) facilitated the transport of slow flow groundwater. Second, the contributions of different end members to the stream changed over the summer. In early summer, stream flow was composed of all three end members, while in late summer, it was composed predominantly of reach inflows and slow flow groundwater. Finally, we observed minimal differences in proportional composition in stream chemistry across all four years, indicating seasonal variability in subsurface moisture and spatial heterogeneity in landscape and geologic features had a greater influence than interannual climate fluctuation on hydrologic connectivity and stream water chemistry. These findings indicate that mechanisms controlling solute transport (e.g., hydrologic connectivity and flow path activation) may be resilient (i.e., able to rebound after perturbations) to predicted increases in climate variability. By establishing a framework for assessing compositional stream chemistry across variable hydrologic and subsurface moisture conditions, our study offers a method to evaluate watershed biogeochemical resilience to variations in hydrometeorological conditions. 
    more » « less
  4. The geochemistry and strontium isotope data for Coal Creek Watershed, Colorado, consists of cation, anion, and 87Sr/87Sr isotope values from samples collected at 8 stream location along Coal Creek, samples from two groundwater springs within the watershed, and a shallow subsurface piezometer. All stream and spring samples were collected between June and October, 2021, and the shallow, near stream piezometer sample was collected in July of 2022. These data were collected to evaluate how groundwater contributions to Coal Creek originating from shallow vs deep flow paths respond seasonal drying. Understanding of groundwater-surface water interactions in montane systems in critical for the future of water availability in the Western US as groundwater contributions are expected to become more important for sustaining summer stream flows. This data package contains: (1) a csv of all cation samples; (2) a csv of all anion samples; (3) a csv of all 87Sr/87Sr isotope samples; and (4) a csv of locations for each sampling site. The dataset additionally includes a file-level metadata (flmd.csv) file that lists each file contained in the dataset with associated metadata; and a data dictionary (dd.csv) file that contains column/row headers used throughout the files along with a definition, units, and data type. 
    more » « less
  5. Intermittent headwater streams are highly vulnerable to environmental disturbances, but effective management of these water resources requires first understanding the mechanisms that generate streamflow. This study examined mechanisms governing streamflow generation in merokarst terrains, a type of carbonate terrain that covers much of the central United States yet has received relatively little attention in hydrological studies. We used high-frequency sampling of precipitation, stream water, and groundwater during summer 2021 to quantify the contributions to streamflow from different water sources and characterize their short-term dynamics in a 1.2 km 2 merokarst catchment at the Konza Prairie Biological Station (Kansas, USA). Mixing calculations using stable water isotopes and dissolved ions indicate that streamflow is overwhelmingly contributed by groundwater discharge from thin (1–2 m) limestone aquifers, even during wet periods, when soil water and surface runoff are generally expected to be more important. Relationships between hydraulic heads in the aquifers and their contributions to streamflow differed early in the study period compared to later, after a major storm occurred, suggesting there is a critical threshold of groundwater storage that the bedrock needs to attain before fully connecting to the stream. Furthermore, contributions from each limestone unit varied during the study period in response to differences in their hydrogeological properties and/or their stratigraphic position, which in turn impacted both the length of streamflow and its composition. Taken together, we interpret that the subsurface storage threshold and variation in aquifer properties are major controllers of flow intermittency in merokarst headwater catchments. 
    more » « less