skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nonparametric Statistical Inference via Metric Distribution Function in Metric Spaces
The distribution function is essential in statistical inference and connected with samples to form a directed closed loop by the correspondence theorem in measure theory and the Glivenko-Cantelli and Donsker properties. This connection creates a paradigm for statistical inference. However, existing distribution functions are defined in Euclidean spaces and are no longer convenient to use in rapidly evolving data objects of complex nature. It is imperative to develop the concept of the distribution function in a more general space to meet emerging needs. Note that the linearity allows us to use hypercubes to define the distribution function in a Euclidean space. Still, without the linearity in a metric space, we must work with the metric to investigate the probability measure. We introduce a class of metric distribution functions through the metric only. We overcome this challenging step by proving the correspondence theorem and the Glivenko-Cantelli theorem for metric distribution functions in metric spaces, laying the foundation for conducting rational statistical inference for metric space-valued data. Then, we develop a homogeneity test and a mutual independence test for non-Euclidean random objects and present comprehensive empirical evidence to support the performance of our proposed methods. Supplementary materials for this article are available online.  more » « less
Award ID(s):
2112711
PAR ID:
10515836
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Taylor & Francis
Date Published:
Journal Name:
Journal of the American Statistical Association
ISSN:
0162-1459
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. By seeing whether a Liouville type theorem holds for positive, bounded, and/or finite \(p\)-energy \(p\)-harmonic and \(p\)-quasiharmonic functions, we classify proper metric spaces equipped with a locally doubling measure supporting a local \(p\)-Poincaré inequality. Similar classifications have earlier been obtained for Riemann surfaces and Riemannian manifolds. We study the inclusions between these classes of metric measure spaces, and their relationship to the \(p\)-hyperbolicity of the metric space and its ends. In particular, we characterize spaces that carry nonconstant \(p\)-harmonic functions with finite \(p\)-energy as spaces having at least two well-separated \(p\)-hyperbolic sequences of sets towards infinity. We also show that every such space \(X\) has a function \(f \notin L^p(X) + \mathbf{R}\) with finite \(p\)-energy. 
    more » « less
  2. We study the problem of supervised learning a metric space under discriminative constraints. Given a universe X and sets S, D subset binom{X}{2} of similar and dissimilar pairs, we seek to find a mapping f:X -> Y, into some target metric space M=(Y,rho), such that similar objects are mapped to points at distance at most u, and dissimilar objects are mapped to points at distance at least l. More generally, the goal is to find a mapping of maximum accuracy (that is, fraction of correctly classified pairs). We propose approximation algorithms for various versions of this problem, for the cases of Euclidean and tree metric spaces. For both of these target spaces, we obtain fully polynomial-time approximation schemes (FPTAS) for the case of perfect information. In the presence of imperfect information we present approximation algorithms that run in quasi-polynomial time (QPTAS). We also present an exact algorithm for learning line metric spaces with perfect information in polynomial time. Our algorithms use a combination of tools from metric embeddings and graph partitioning, that could be of independent interest. 
    more » « less
  3. We study the quantitative properties of Lipschitz mappings from Euclidean spaces into metric spaces. We prove that it is always possible to decompose the domain of such a mapping into pieces on which the mapping “behaves like a projection mapping” along with a “garbage set” that isarbitrarily smallin an appropriate sense. Moreover, our control is quantitative, i.e., independent of both the particular mapping and the metric space it maps into. This improves a theorem of Azzam-Schul from the paper “Hard Sard”, and answers a question left open in that paper. The proof uses ideas of quantitative differentiation, as well as a detailed study of how to supplement Lipschitz mappings by additional coordinates to form bi-Lipschitz mappings. 
    more » « less
  4. We study the large-scale behavior of Newton-Sobolev functions on complete, connected, proper, separable metric measure spaces equipped with a Borel measure μ with μ(X) = ∞ and 0 < μ(B(x, r)) < ∞ for all x ∈ X and r ∈ (0, ∞). Our objective is to understand the relationship between the Dirichlet space D^(1,p)(X), defined using upper gradients, and the Newton-Sobolev space N^(1,p)(X)+ℝ, for 1 ≤ p < ∞. We show that when X is of uniformly locally p-controlled geometry, these two spaces do not coincide under a wide variety of geometric and potential theoretic conditions. We also show that when the metric measure space is the standard hyperbolic space ℍⁿ with n ≥ 2, these two spaces coincide precisely when 1 ≤ p ≤ n-1. We also provide additional characterizations of when a function in D^(1,p)(X) is in N^(1,p)(X)+ℝ in the case that the two spaces do not coincide. 
    more » « less
  5. null (Ed.)
    In this paper, we study the asymptotic behavior of BV functions in complete metric measure spaces equipped with a doubling measure supporting a 1-Poincare inequality. We show that at almost every point x outside the Cantor and jump parts of a BV function, the asymptotic limit of the function is a Lipschitz continuous function of least gradient on a tangent space to the metric space based at x. We also show that, at co-dimension 1 Hausdorff measure almost every measure-theoretic boundary point of a set E of finite perimeter, there is an asymptotic limit set (E)∞ corresponding to the asymptotic expansion of E and that every such asymptotic limit (E)∞ is a quasiminimal set of finite perimeter. We also show that the perimeter measure of (E)∞ is Ahlfors co-dimension 1 regular. 
    more » « less