skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hyperfine and Zeeman interactions in ultracold collisions of molecular hydrogen with atomic lithium
We present a rigorous quantum scattering study of the effects of hyperfine and Zeeman interactions on cold Li–H2 collisions in the presence of an external magnetic field using a recent ab initio potential energy surface. We find that the low-field-seeking states of H2 predominantly undergo elastic collisions: the ratio of elastic-to-inelastic cross sections exceeds 100 for collision energies below 100 mK. Furthermore, we demonstrate that most inelastic collisions conserve the space-fixed projection of the nuclear spin. We show that the anisotropic hyperfine interaction between the nuclear spin of H2 and the electron spin of Li can have a significant effect on inelastic scattering in the ultracold regime, as it mediates two processes: the electron spin relaxation in lithium and the nuclear spin–electron spin exchange. Given the predominance of elastic collisions and the propensity of inelastic collisions to retain H2 in its low-field-seeking states, our results open up the possibility of sympathetic cooling of molecular hydrogen by atomic lithium, paving the way for future exploration of ultracold collisions and high-precision spectroscopy of H2 molecules.  more » « less
Award ID(s):
2045681
PAR ID:
10515875
Author(s) / Creator(s):
; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
160
Issue:
9
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effects of hyperfine structure on ultracold molecular collisions in external fields are largely unexplored due to major computational challenges associated with rapidly proliferating hyperfine and rotational channels coupled by highly anisotropic intermolecular interactions. We explore a new basis set for incorporating the effects of hyperfine structure and external magnetic fields in quantum scattering calculations on ultracold molecular collisions. The basis is composed of direct products of the eigenfunctions of the total {\it rotational} angular momentum (TRAM) of the collision complex Jr and the electron/nuclear spin basis functions of the collision partners. The separation of the rotational and spin degrees of freedom ensures rigorous conservation of Jr even in the presence of external magnetic fields and isotropic hyperfine interactions. The resulting block-diagonal structure of the scattering Hamiltonian enables coupled-channel calculations on highly anisotropic atom-molecule and molecule-molecule collisions to be performed independently for each value of Jr, with an added advantage of eliminating the unphysical states present in the total angular momentum representation. We illustrate the efficiency of the TRAM basis by calculating state-to-state cross sections for ultracold He + YbF collisions in a magnetic field. The size of the TRAM basis required to reach numerical convergence is 8 times smaller than that of the uncoupled basis used previously, providing a computational gain of three orders of magnitude. The TRAM basis is therefore well suited for rigorous quantum scattering calculations on ultracold molecular collisions in the presence of hyperfine interactions and external magnetic fields. 
    more » « less
  2. The calcium monofluoride (CaF) molecule has emerged as a promising candidate for precision measurements, quantum simulation, and ultracold chemistry experiments. Inelastic and reactive collisions of laser cooled CaF molecules in optical tweezers have recently been reported and collisions of cold Li atoms with CaF are of current experimental interest. In this paper, we report ab initio electronic structure and full-dimensional quantum dynamical calculations of the Li + CaF → LiF + Ca chemical reaction. The electronic structure calculations are performed using the internally contracted multi-reference configuration-interaction method with Davidson correction (MRCI + Q). An analytic fit of the interaction energies is obtained using a many-body expansion method. A coupled-channel quantum reactive scattering approach implemented in hyperspherical coordinates is adopted for the scattering calculations under cold conditions. Results show that the Li + CaF reaction populates several low-lying vibrational levels and many rotational levels of the product LiF molecule and that the reaction is inefficient in the 1–100 mK regime allowing sympathetic cooling of CaF by collisions with cold Li atoms. 
    more » « less
  3. null (Ed.)
    Electronically non-adiabatic effects play an important role in many chemical reactions. However, how these effects manifest in cold and ultracold chemistry remains largely unexplored. Here for the first time we present from first principles the non-adiabatic quantum dynamics of the reactive scattering between ultracold alkali-metal LiNa molecules and Li atoms. We show that non-adiabatic dynamics induces quantum interference effects that dramatically alter the ultracold rotationally resolved reaction rate coefficients. The interference effect arises from the conical intersection between the ground and an excited electronic state that is energetically accessible even for ultracold collisions. These unique interference effects might be exploited for quantum control applications such as a quantum molecular switch. The non-adiabatic dynamics are based on full-dimensional ab initio potential energy surfaces for the two electronic states that includes the non-adiabatic couplings and an accurate treatment of the long-range interactions. A statistical analysis of rotational populations of the Li 2 product reveals a Poisson distribution implying the underlying classical dynamics are chaotic. The Poisson distribution is robust and amenable to experimental verification and appears to be a universal property of ultracold reactions involving alkali metal dimers. 
    more » « less
  4. Multipartite entangled states are an essential resource for sensing, quantum error correction, and cryptography. Color centers in solids are one of the leading platforms for quantum networking due to the availability of a nuclear spin memory that can be entangled with the optically active electronic spin through dynamical decoupling sequences. Creating electron-nuclear entangled states in these systems is a difficult task as the always-on hyperfine interactions prohibit complete isolation of the target dynamics from the unwanted spin bath. While this emergent cross-talk can be alleviated by prolonging the entanglement generation, the gate durations quickly exceed coherence times. Here we show how to prepare high-quality GHZ M -like states with minimal cross-talk. We introduce the M -tangling power of an evolution operator, which allows us to verify genuine all-way correlations. Using experimentally measured hyperfine parameters of an NV center spin in diamond coupled to carbon-13 lattice spins, we show how to use sequential or single-shot entangling operations to prepare GHZ M -like states of up to M = 10 qubits within time constraints that saturate bounds on M -way correlations. We study the entanglement of mixed electron-nuclear states and develop a non-unitary M -tangling power which additionally captures correlations arising from all unwanted nuclear spins. We further derive a non-unitary M -tangling power which incorporates the impact of electronic dephasing errors on the M -way correlations. Finally, we inspect the performance of our protocols in the presence of experimentally reported pulse errors, finding that XY decoupling sequences can lead to high-fidelity GHZ state preparation. 
    more » « less
  5. Abstract Molecules have vibrational, rotational, spin-orbit and hyperfine degrees of freedom or quantum states, each of which responds in a unique fashion to external electromagnetic radiation. The control over superpositions of these quantum states is key to coherent manipulation of molecules. For example, the better the coherence time the longer quantum simulations can last. The important quantity for controlling an ultracold molecule with laser light is its complex-valued molecular dynamic polarizability. Its real part determines the tweezer or trapping potential as felt by the molecule, while its imaginary part limits the coherence time. Here, our study shows that efficient trapping of a molecule in its vibrational ground state can be achieved by selecting a laser frequency with a detuning on the order of tens of GHz relative to an electric-dipole-forbidden molecular transition. Close proximity to this nearly forbidden transition allows to create a sufficiently deep trapping potential for multiple rotational states without sacrificing coherence times among these states from Raman and Rayleigh scattering. In fact, we demonstrate that magic trapping conditions for multiple rotational states of the ultracold23Na87Rb polar molecule can be created. 
    more » « less