skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the absence of supergravity solutions for localized, intersecting sources
A<sc>bstract</sc> For decades intersecting D-branes and O-planes have been playing a very important role in string phenomenology in the context of particle physics model building and in the context of flux compactifications. The corresponding supergravity equations are hard to solve so generically solutions only exist in a so-called smeared limit where the delta function sources are replaced by constants. We are showing here that supergravity solutions for two perpendicularly intersecting localized sources in flat space do not exist for a generic diagonal metric Ansatz. We show this for two intersecting sources withp= 1, 2, 3, 4, 5, 6 spatial dimensions that preserve 8 supercharges, and we allow for fully generic fluxes.  more » « less
Award ID(s):
2210271
PAR ID:
10515943
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2024
Issue:
6
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> Finding string backgrounds with de Sitter spacetime, where all approximations and corrections are controlled, is an open problem. We revisit the search for de Sitter solutions in the classical regime for specific type IIB supergravity compactifications on group manifolds, an under-explored corner of the landscape that offers an interesting testing ground for swampland conjectures. While the supergravity de Sitter solutions we obtain numerically are ambiguous in terms of their classicality, we find an analytic scaling that makes four out of six compactification radii, as well as the overall volume, arbitrarily large. This potentially provides parametric control over corrections. If we could show that these solutions, or others to be found, are fully classical, they would constitute a counterexample to conjectures stating that asymptotic de Sitter solutions do not exist. We discuss this point in great detail. 
    more » « less
  2. A<sc>bstract</sc> We consider the uplift of co-dimension two defect solutions of seven dimensional gauged supergravity to eleven dimensions, previously found by two of the authors. The uplifted solutions are expressed as Lin-Lunin-Maldacena solutions and an infinite family of regular solutions describing holographic defects is found using the electrostatic formulation of LLM solutions. 
    more » « less
  3. A<sc>bstract</sc> We construct new Euclidean wormhole solutions in AdSd+1and discuss their role in UV-complete theories, without ensemble averaging. The geometries are interpreted as overlaps of GHZ-like entangled states, which arise naturally from coarse graining the density matrix of a pure state in the dual CFT. In several examples, including thin-shell collapsing black holes and pure black holes with an end-of-the-world brane behind the horizon, the coarse-graining map is found explicitly in CFT terms, and used to define a coarse-grained entropy that is equal to one quarter the area of a time-symmetric apparent horizon. Wormholes are used to derive the coarse-graining map and to study statistical properties of the quantum state. This reproduces aspects of the West Coast model of 2D gravity and the large-censemble of 3D gravity, including a Page curve, in a higher-dimensional context with generic matter fields. 
    more » « less
  4. A<sc>bstract</sc> We revisit six-dimensional (1, 0) supergravity coupled tonTtensor multiplets and Yang-Mills fields fornT> 1 for which no covariant action exists. We construct the action in the Henneaux-Teitelboim approach and in the presence of a gauge anomaly. We moreover obtain the supersymmetric Green-Schwarz counterterm for the gravitational anomaly for arbitrary matter content. 
    more » « less
  5. Abstract We present a detailed study of the massive star-forming region G35.2-0.74N with Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm multi-configuration observations. At 0.″2 (440 au) resolution, the continuum emission reveals several dense cores along a filamentary structure, consistent with previous ALMA 0.85 mm observations. At 0.″03 (66 au) resolution, we detect 22 compact sources, most of which are associated with the filament. Four of the sources are associated with compact centimeter continuum emission, and two of these are associated with H30αrecombination line emission. The H30αline kinematics shows the ordered motion of the ionized gas, consistent with disk rotation and/or outflow expansion. We construct models of photoionized regions to simultaneously fit the multiwavelength free–free fluxes and the H30αtotal fluxes. The derived properties suggest the presence of at least three massive young stars with nascent hypercompact Hiiregions. Two of these ionized regions are surrounded by a large rotating structure that feeds two individual disks, revealed by dense gas tracers, such as SO2, H2CO, and CH3OH. In particular, the SO2emission highlights two spiral structures in one of the disks and probes the faster-rotating inner disks. The12CO emission from the general region reveals a complex outflow structure, with at least four outflows identified. The remaining 18 compact sources are expected to be associated with lower-mass protostars forming in the vicinity of the massive stars. We find potential evidence for disk disruption due to dynamic interactions in the inner region of this protocluster. The spatial distribution of the sources suggests a smooth overall radial density gradient without subclustering, but with tentative evidence of primordial mass segregation. 
    more » « less