skip to main content


Title: Fresher content or smoother playback?: a brownian-approximation framework for scheduling real-time wireless video streams
This paper presents a Brownian-approximation framework to optimize the quality of experience (QoE) for real-time video streaming in wireless networks. In real-time video streaming, one major challenge is to tackle the natural tension between the two most critical QoE metrics: playback latency and video interruption. To study this trade-off, we first propose an analytical model that precisely captures all aspects of the playback process of a real-time video stream, including playback latency, video interruptions, and packet dropping. Built on this model, we show that the playback process of a real-time video can be approximated by a two-sided reflected Brownian motion. Through such Brownian approximation, we are able to study the fundamental limits of the two QoE metrics and characterize a necessary and sufficient condition for a set of QoE performance requirements to be feasible. We propose a scheduling policy that satisfies any feasible set of QoE performance requirements and then obtain simple rules on the trade-off between playback latency and the video interrupt rates, in both heavy-traffic and under-loaded regimes. Finally, simulation results verify the accuracy of the proposed approximation and show that the proposed policy outperforms other popular baseline policies.  more » « less
Award ID(s):
1719384
NSF-PAR ID:
10296004
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM MobiHoc 2020
Page Range / eLocation ID:
41 to 50
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Spatiotemporal variation in cellular bandwidth availability is well-known and could affect a mobile user's quality of experience (QoE), especially while using bandwidth intensive streaming applications such as movies, podcasts, and music videos during commute. If such variations are made available to a streaming service in advance it could perhaps plan better to avoid sub-optimal performance while the user travels through regions of low bandwidth availability. The intuition is that such future knowledge could be used to buffer additional content in regions of higher bandwidth availability to tide over the deficits in regions of low bandwidth availability. Foresight is a service designed to provide this future knowledge for client apps running on a mobile device. It comprises three components: (a) a crowd-sourced bandwidth estimate reporting facility, (b) an on-cloud bandwidth service that records the spatiotemporal variations in bandwidth and serves queries for bandwidth availability from mobile users, and (c) an on-device bandwidth manager that caters to the bandwidth requirements from client apps by providing them with bandwidth allocation schedules. Foresight is implemented in the Android framework. As a proof of concept for using this service, we have modified an open-source video player---Exoplayer---to use the results of Foresight in its video buffer management. Our performance evaluation shows Foresight's scalability. We also showcase the opportunity that Foresight offers to ExoPlayer to enhance video quality of experience (QoE) despite spatiotemporal bandwidth variations for metrics such as overall higher bitrate of playback, reduction in number of bitrate switches, and reduction in the number of stalls during video playback. 
    more » « less
  2. Mobile devices such as drones and autonomous vehicles increasingly rely on object detection (OD) through deep neural networks (DNNs) to perform critical tasks such as navigation, target-tracking and surveillance, just to name a few. Due to their high complexity, the execution of these DNNs requires excessive time and energy. Low-complexity object tracking (OT) is thus used along with OD, where the latter is periodically applied to generate "fresh" references for tracking. However, the frames processed with OD incur large delays, which does not comply with real-time applications requirements. Offloading OD to edge servers can mitigate this issue, but existing work focuses on the optimization of the offloading process in systems where the wireless channel has a very large capacity. Herein, we consider systems with constrained and erratic channel capacity, and establish parallel OT (at the mobile device) and OD (at the edge server) processes that are resilient to large OD latency. We propose Katch-Up, a novel tracking mechanism that improves the system resilience to excessive OD delay. We show that this technique greatly improves the quality of the reference available to tracking, and boosts performance up to 33%. However, while Katch-Up significantly improves performance, it also increases the computing load of the mobile device. Hence, we design SmartDet, a low-complexity controller based on deep reinforcement learning (DRL) that learns to achieve the right trade-off between resource utilization and OD performance. SmartDet takes as input highly-heterogeneous context-related information related to the current video content and the current network conditions to optimize frequency and type of OD offloading, as well as Katch-Up utilization. We extensively evaluate SmartDet on a real-world testbed composed by a JetSon Nano as mobile device and a GTX 980 Ti as edge server, connected through a Wi-Fi link, to collect several network-related traces, as well as energy measurements. We consider a state-of-the-art video dataset (ILSVRC 2015 - VID) and state-of-the-art OD models (EfficientDet 0, 2 and 4). Experimental results show that SmartDet achieves an optimal balance between tracking performance – mean Average Recall (mAR) and resource usage. With respect to a baseline with full Katch-Up usage and maximum channel usage, we still increase mAR by 4% while using 50% less of the channel and 30% power resources associated with Katch-Up. With respect to a fixed strategy using minimal resources, we increase mAR by 20% while using Katch-Up on 1/3 of the frames. 
    more » « less
  3. Streaming of live 360-degree video allows users to follow a live event from any view point and has already been deployed on some commercial platforms. However, the current systems can only stream the video at relatively low-quality because the entire 360-degree video is delivered to the users under limited bandwidth. In this paper, we propose to use the idea of "flocking" to improve the performance of both prediction of field of view (FoV) and caching on the edge servers for live 360-degree video streaming. By assigning variable playback latencies to all the users in a streaming session, a "streaming flock" is formed and led by low latency users in the front of the flock. We propose a collaborative FoV prediction scheme where the actual FoV information of users in the front of the flock are utilized to predict of users behind them. We further propose a network condition aware flocking strategy to reduce the video freeze and increase the chance for collaborative FoV prediction on all users. Flocking also facilitates caching as video tiles downloaded by the front users can be cached by an edge server to serve the users at the back of the flock, thereby reducing the traffic in the core network. We propose a latency-FoV based caching strategy and investigate the potential gain of applying transcoding on the edge server. We conduct experiments using real-world user FoV traces and WiGig network bandwidth traces to evaluate the gains of the proposed strategies over benchmarks. Our experimental results demonstrate that the proposed streaming system can roughly double the effective video rate, which is the video rate inside a user's actual FoV, compared to the prediction only based on the user's own past FoV trajectory, while reducing video freeze. Furthermore, edge caching can reduce the traffic in the core network by about 80%, which can be increased to 90% with transcoding on edge server. 
    more » « less
  4. Low-latency is a critical user Quality-of-Experience (QoE) metric for live video streaming. It poses significant challenges for streaming over the Internet. In this paper, we explore the design space of low-latency live video streaming by developing dynamic models and optimal control strategies. We further develop practical live video streaming algorithms within the Model Predictive Control (MPC) framework, namely MPC-Live, to maximize user QoE by adapting the video bitrate while maintaining low end-to-end video latency in dynamic network environment. Through extensive experiments driven by real network traces, we demonstrate that our live video streaming algorithms can improve the performance dramatically within latency range of two to five seconds. 
    more » « less
  5. Matching markets with historical data are abundant in many applications, e.g., matching candidates to jobs in hiring, workers to tasks in crowdsourcing markets, and jobs to servers in cloud services. In all these applications, a match consumes one or more shared and limited resources and the goal is to best utilize these to maximize a global objective. Additionally, one often has historical data and hence some statistics (usually first-order moments) of the arriving agents (e.g., candidates, workers, and jobs) can be learnt. To model these scenarios, we propose a unifying framework, called Multi- Budgeted Online Assignment with Known Adversarial Distributions. In this model,we have a set of offline servers with different deadlines and a set of online job types. At each time, a job of type j arrives. Assigning this job to a server i yields a profit w(i, j) while consuming a(i,j) -- a vector lying in [0, 1]^K -- quantities of distinct resources. The goal is to design an (online) assignment policy that maximizes the total expected profit without violating the (hard) budget constraint. We propose and theoretically analyze two linear programming (LP) based algorithms which are almost optimal among all LP-based approaches. We also propose several heuristics adapted from our algorithms and compare them to other LP-agnostic algorithms using both synthetic as well as real-time cloud scheduling and public safety datasets. Experimental results show that our proposed algorithms are effective and significantly out-perform the baselines. Moreover, we show empirically the trade-off between fairness and efficiency of our algorithms which does well even on fairness metrics without explicitly optimizing for it. 
    more » « less