skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Remodelling selection to optimise disease forecasts and policies
Abstract Mathematical models are increasingly adopted for setting disease prevention and control targets. As model-informed policies are implemented, however, the inaccuracies of some forecasts become apparent, for example overprediction of infection burdens and intervention impacts. Here, we attribute these discrepancies to methodological limitations in capturing the heterogeneities of real-world systems. The mechanisms underpinning risk factors of infection and their interactions determine individual propensities to acquire disease. These factors are potentially so numerous and complex that to attain a full mechanistic description is likely unfeasible. To contribute constructively to the development of health policies, model developers either leave factors out (reductionism) or adopt a broader but coarse description (holism). In our view, predictive capacity requires holistic descriptions of heterogeneity which are currently underutilised in infectious disease epidemiology, in comparison to other population disciplines, such as non-communicable disease epidemiology, demography, ecology and evolution.  more » « less
Award ID(s):
1911853
PAR ID:
10516016
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Top Science
Date Published:
Journal Name:
Journal of Physics A: Mathematical and Theoretical
Volume:
57
Issue:
10
ISSN:
1751-8113
Page Range / eLocation ID:
103001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Geard, Nicholas (Ed.)
    Human behavior plays a crucial role in infectious disease transmission, yet traditional models often overlook or oversimplify this factor, limiting predictions of disease spread and the associated socioeconomic impacts. Here we introduce a feedback-informed epidemiological model that integrates human behavior with disease dynamics in a credible, tractable, and extendable manner. From economics, we incorporate a dynamic decision-making model where individuals assess the trade-off between disease risks and economic consequences, and then link this to a risk-stratified compartmental model of disease spread taken from epidemiology. In the unified framework, heterogeneous individuals make choices based on current and future payoffs, influencing their risk of infection and shaping population-level disease dynamics. As an example, we model disease-decision feedback during the early months of the COVID-19 pandemic, when the decision to participate in paid, in-person work was a major determinant of disease risk. Comparing the impacts of stylized policy options representing mandatory, incentivized/compensated, and voluntary work abstention, we find that accounting for disease-behavior feedback has a significant impact on the relative health and economic impacts of policies. Including two crucial dimensions of heterogeneity—health and economic vulnerability—the results highlight how inequities between risk groups can be exacerbated or alleviated by disease control measures. Importantly, we show that a policy of more stringent workplace testing can potentially slow virus spread and, surprisingly, increase labor supply since individuals otherwise inclined to remain at home to avoid infection perceive a safer workplace. In short, our framework permits the exploration of avenues whereby health and wealth need not always be at odds. This flexible and extendable modeling framework offers a powerful tool for understanding the interplay between human behavior and disease spread. 
    more » « less
  2. Abstract Previous research has noted that many factors greatly influence the spread of COVID‐19. Contrary to explicit factors that are measurable, such as population density, number of medical staff, and the daily test rate, many factors are not directly observable, for instance, culture differences and attitudes toward the disease, which may introduce unobserved heterogeneity. Most contemporary COVID‐19 related research has focused on modeling the relationship between explicitly measurable factors and the response variable of interest (such as the infection rate or the death rate). The infection rate is a commonly used metric for evaluating disease progression and a state's mitigation efforts. Because unobservable sources of heterogeneity cannot be measured directly, it is hard to incorporate them into the quantitative assessment and decision‐making process. In this study, we propose new metrics to study a state's performance by adjusting the measurable county‐level covariates and unobservable state‐level heterogeneity through random effects. A hierarchical linear model (HLM) is postulated, and we calculate two model‐based metrics—the standardized infection ratio (SDIR) and the adjusted infection rate (AIR). This analysis highlights certain time periods when the infection rate for a state was high while their SDIR was low and vice versa. We show that trends in these metrics can give insight into certain aspects of a state's performance. As each state continues to develop their individualized COVID‐19 mitigation strategy and ultimately works to improve their performance, the SDIR and AIR may help supplement the crude infection rate metric to provide a more thorough understanding of a state's performance. 
    more » « less
  3. Abstract Understanding the community ecology of vector-borne and zoonotic diseases, and how it may shift transmission risk as it responds to environmental change, has become a central focus in disease ecology. Yet, it has been challenging to link the ecology of disease with reported human incidence. Here, we bridge the gap between local-scale community ecology and large-scale disease epidemiology, drawing from a priori knowledge of tick-pathogen-host ecology to model spatially-explicit Lyme disease (LD) risk, and human Lyme disease incidence (LDI) in California. We first use a species distribution modeling approach to model disease risk with variables capturing climate, vegetation, and ecology of key reservoir host species, and host species richness. We then use our modeled disease risk to predict human disease incidence at the zip code level across California. Our results suggest the ecology of key reservoir hosts—particularly dusky-footed woodrats—is central to disease risk posed by ticks, but that host community richness is not strongly associated with tick infection. Predicted disease risk, which is most strongly influenced by the ecology of dusky-footed woodrats, in turn is a strong predictor of human LDI. This relationship holds in the Wildland-Urban Interface, but not in open access public lands, and is stronger in northern California than in the state as a whole. This suggests peridomestic exposure to infected ticks may be more important to LD epidemiology in California than recreational exposure, and underlines the importance of the community ecology of LD in determining human transmission risk throughout this LD endemic region of far western North America. More targeted tick and pathogen surveillance, coupled with studies of human and tick behavior could improve understanding of key risk factors and inform public health interventions. Moreover, longitudinal surveillance data could further improve forecasts of disease risk in response to global environmental change. 
    more » « less
  4. Abstract When a novel disease strikes a naïve host population, there is evidence that the most immediate response can involve host evolution while the pathogen remains relatively unchanged. When hosts also live in metapopulations, there may be critical differences in the dynamics that emerge from the synergy among evolutionary, ecological, and epidemiological factors. Here we used a Susceptible-Infected-Recovery model to explore how spatial and temporal ecological factors may drive the epidemiological and rapid-evolutionary dynamics of host metapopulations. For simplicity, we assumed two host genotypes: wild type, which has a positive intrinsic growth rate in the absence of disease, and robust type, which is less likely to catch the infection given exposure but has a lower intrinsic growth rate in the absence of infection. We found that the robust-type host would be strongly selected for in the presence of disease when transmission differences between the two types is large. The growth rate of the wild type had dual but opposite effects on host composition: a smaller increase in wild-type growth increased wild-type competition and lead to periodical disease outbreaks over the first generations after pathogen introduction, while larger growth increased disease by providing more susceptibles, which increased robust host density but decreased periodical outbreaks. Increased migration had a similar impact as the increased differential susceptibility, both of which led to an increase in robust hosts and a decrease in periodical outbreaks. Our study provided a comprehensive understanding of the combined effects among migration, disease epidemiology, and host demography on host evolution with an unchanging pathogen. The findings have important implications for wildlife conservation and zoonotic disease control. 
    more » « less
  5. In this modern era, infectious diseases, such as H1N1, SARS, and Ebola, are spreading much faster than any time in history. Efficient approaches are therefore desired to monitor and track the diffusion of these deadly epidemics. Traditional computational epidemiology models are able to capture the disease spreading trends through contact network, however, one unable to provide timely updates via real-world data. In contrast, techniques focusing on emerging social media platforms can collect and monitor real-time disease data, but do not provide an understanding of the underlying dynamics of ailment propagation. To achieve efficient and accurate real-time disease prediction, the framework proposed in this paper combines the strength of social media mining and computational epidemiology. Specifically, individual health status is first learned from user's online posts through Bayesian inference, disease parameters are then extracted for the computational models at population-level, and the outputs of computational epidemiology model are inversely fed into social media data based models for further performance improvement. In various experiments, our proposed model outperforms current disease forecasting approaches with better accuracy and more stability. 
    more » « less