skip to main content


This content will become publicly available on July 1, 2025

Title: VFCFinder: Pairing Security Advisories and Patches
Security advisories are the primary channel of communication for discovered vulnerabilities in open-source software, but they often lack crucial information. Specifically, 63% of vulnerability database reports are missing their patch links, also referred to as vulnerability fixing commits (VFCs). This paper introduces VFCFinder, a tool that generates the top-five ranked set of VFCs for a given security advisory using Natural Language Programming Language (NL-PL) models. VFCFinder yields a 96.6% recall for finding the correct VFC within the Top-5 commits, and an 80.0% recall for the Top-1 ranked commit. VFCFinder generalizes to nine different programming languages and outperforms state-of-the-art approaches by 36 percentage points in terms of Top-1 recall. As a practical contribution, we used VFCFinder to backfill over 300 missing VFCs in the GitHub Security Advisory (GHSA) database. All of the VFCs were accepted and merged into the GHSA database. In addition to demonstrating a practical pairing of security advisories to VFCs, our general open-source implementation will allow vulnerability database maintainers to drastically improve data quality, supporting efforts to secure the software supply chain.  more » « less
Award ID(s):
2207008
PAR ID:
10516054
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM ASIA Conference on Computer and Communications Security (AsiaCCS)
Format(s):
Medium: X
Location:
Singapore
Sponsoring Org:
National Science Foundation
More Like this
  1. Since its inception in 2011, Elixir has emerged as a popular programming language. Currently, Elixir is used in a diverse set of domains, such as instant messaging, smart farming, and e-commerce. Usage of Elixir in above-mentioned domains necessitates gaining an understanding of the state of vulnerabilities that are reported for Elixir programs. An empirical analysis of vulnerability-related commits, i.e., commits that indicate action taken to mitigate vulnerabilities, can help us understand how frequently vulnerabilities appear in Elixir programs. Such understanding can also be a starting point to integrate secure software development practices into the Elixir ecosystem. We conduct an empirical study where we mine 4,446 commits from 25 open source Elixir repositories from GitHub. Our findings show that (i) 2.0% of the 4,446 commits are vulnerability-related, (ii) 18.0% of the 1,769 Elixir programs in our dataset are modified in vulnerability-related commits, and (iii) the proportion of vulnerability-related commits is highest in 2020. Despite Elixir being perceived as a 'safe' language, our empirical study shows programs written in Elixir to contain vulnerabilities. Based on our findings, we recommend researchers to investigate the root causes of introducing vulnerabilities in Elixir programs. 
    more » « less
  2. null (Ed.)
    Detecting security vulnerabilities in software before they are exploited has been a challenging problem for decades. Traditional code analysis methods have been proposed, but are often ineffective and inefficient. In this work, we model software vulnerability detection as a natural language processing (NLP) problem with source code treated as texts, and address the auto-mated software venerability detection with recent advanced deep learning NLP models assisted by transfer learning on written English. For training and testing, we have preprocessed the NIST NVD/SARD databases and built a dataset of over 100,000 files in C programming language with 123 types of vulnerabilities. The extensive experiments generate the best performance of over 93% accuracy in detecting security vulnerabilities. 
    more » « less
  3. Background: Machine learning techniques have been widely used and demonstrate promising performance in many software security tasks such as software vulnerability prediction. However, the class ratio within software vulnerability datasets is often highly imbalanced (since the percentage of observed vulnerability is usually very low). Goal: To help security practitioners address software security data class imbalanced issues and further help build better prediction models with resampled datasets. Method: We introduce an approach called Dazzle which is an optimized version of conditional Wasserstein Generative Adversarial Networks with gradient penalty (cWGAN-GP). Dazzle explores the architecture hyperparameters of cWGAN-GP with a novel optimizer called Bayesian Optimization. We use Dazzle to generate minority class samples to resample the original imbalanced training dataset. Results: We evaluate Dazzle with three software security datasets, i.e., Moodle vulnerable files, Ambari bug reports, and JavaScript function code. We show that Dazzle is practical to use and demonstrates promising improvement over existing state-of-the-art oversampling techniques such as SMOTE (e.g., with an average of about 60% improvement rate over SMOTE in recall among all datasets). Conclusion: Based on this study, we would suggest the use of optimized GANs as an alternative method for security vulnerability data class imbalanced issues. 
    more » « less
  4. Robert Feldt and Thomas Zimmermann (Ed.)
    Julia has emerged as a popular programming language to develop scientific software, in part due to its flexible syntax akin to scripting languages while retaining the execution speed of a compiled language. Similar to any programming language, Julia programs are susceptible to defects. However, a systematic characterization of defects in Julia programs remains under-explored. A systematic analysis of defects in Julia programs will act as a starting point for researchers and toolsmiths in building developer tools to improve the quality of Julia programs. To this end, we conduct an empirical study with 742 defects that appear in Julia programs by mining 30,494 commits and 3,038 issue reports collected from 112 open-source Julia projects. From our empirical analysis, we identify 9 defect categories and 7 defect symptoms. We observe certain defect categories to be Julia-specific, e.g., type instability and world age defects. We also survey 52 developers to rank the identified categories based on perceived severity. Based on our empirical analysis, we provide specific recommendations for researchers and toolsmiths. 
    more » « less
  5. The security threats to mobile application are growing explosively. Mobile app flaws and security defects could open doors for hackers to easily attack mobile apps. Secure software development must be addressed earlier in the development lifecycle rather than fixing the security holes after attacking. Early eliminating against possible security vulnerability will help us increase the security of our software, and militate the consequence of damages of data loss caused by potential malicious attacking. However, many software developer professionals lack the necessary security knowledge and skills at the development stage and Secure Mobile Software Development (SMSD) is not yet well represented in current computing curriculum. In this paper we present a static security analysis approach with open source FindSecurityBugs plugin for Android Studio IDE. We categorized the common mobile vulnerability for developers based on OWASP mobile security recommendations and developed detectors to meet the SMSD needs in industry and education. 
    more » « less