skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 2-Methylpyrazine: A Greener Solvent for Nonsolvent Induced Phase Separation (NIPS) Membrane Fabrication
2-Methylpyrazine (2MP), a flavoring agent, was identified and used as a novel greener solvent for nonsolvent-induced phase separation (NIPS) fabrication of poly(ether sulfone) (PES) ultrafiltration (UF) membranes. Flat-sheet membranes were fabricated with 2MP-cosolvent blends, N,N-dimethylacetamide (DMAc), or dimethyl sulfoxide (DMSO), to investigate the influence of solvent choice on membrane properties and performance. The resulting membranes were characterized to assess morphology, productivity, and molecular weight cutoff (MWCO). In addition, kinetic and thermodynamic aspects of solvent choice on the polymer “dope” solutions during the NIPS process were examined. 2MP-cosolvent blends resulted in membranes with noticeably different morphologies, which arise from miscibility-hindered solvent–nonsolvent exchange during membrane formation. Membrane permeance was significantly lower for 2MP-cosolvent membranes when compared to DMAc and DMSO membranes; however, their MWCOs were clearly decreased. This initial study shows that 2MP is a promising greener solvent candidate for NIPS, and further investigations are warranted.  more » « less
Award ID(s):
2029387 1941700
PAR ID:
10516078
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Industrial & Engineering Chemistry Research
Volume:
63
Issue:
24
ISSN:
0888-5885
Page Range / eLocation ID:
10735 to 10747
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    (1) Different methods have been applied to fabricate polymeric membranes with non-solvent induced phase separation (NIPS) being one of the mostly widely used. In NIPS, a solvent or solvent blend is required to dissolve a polymer or polymer blend. N-methyl-2-pyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF) and other petroleum-derived solvents are commonly used to dissolve some petroleum-based polymers. However, these components may have negative impacts on the environment and human health. Therefore, using greener and less toxic components is of great interest for increasing membrane fabrication sustainability. The chemical structure of membranes is not affected by the use of different solvents, polymers, or by the differences in fabrication scale. On the other hand, membrane pore structures and surface roughness can change due to differences in diffusion rates associated with different solvents/co-solvents diffusing into the non-solvent and with differences in evaporation time. (2) Therefore, in this review, solvents and polymers involved in the manufacturing process of membranes are proposed to be replaced by greener/less toxic alternatives. The methods and feasibility of scaling up green polymeric membrane manufacturing are also examined. 
    more » « less
  2. The removal of small molecular weight charged compounds from aqueous solutions using membrane remains a challenge. In this study, polysulfone (PSf)- and sulfonated polyether ether ketone (SPEEK)-based membranes were fabricated via non-solvent induced phase separation process (NIPS) using N-Methyl-2-Pyrrolidone (NMP) as solvent and water as non-solvent. Membranes were characterized structurally and morphologically, followed by toxicity assessment conducted before and after filtration, both with and without annealing at various pH values to evaluate potential leaching of trapped solvent from the membrane pores. Additionally, membrane performance was characterized using binary mixtures of cationic and anionic dyes. The results demonstrated selective filtration behavior, with cationic dyes being preferentially rejected due to size exclusion and electrostatic interactions. Additionally, a key focus of this work was the investigation of solvent leaching, framed within a Safe(r)-by-Design (SbD) approach aimed at enhancing functional performance while minimizing environmental toxicity. Toxicity assessments using a model organism, a nematode Caenorhabditis elegans, revealed that annealing reduced solvent leaching and thus permeate toxicity, particularly at neutral pH values, by facilitating trapped solvent release prior to membrane use. These findings provide insights for the importance of including an SbD approach during membrane casting to fabricate membranes with desirable properties while minimizing toxicity. 
    more » « less
  3. null (Ed.)
    Polymeric membranes for separation of pharmaceutical intermediates/products by organic solvent nanofiltration (OSN) have to be highly resistant to many organic solvents including high-boiling polar aprotic ones, e.g., N- methyl-2-pyrollidone (NMP), dimethylsulfoxide (DMSO), dimethylformamide (DMF). Unless cross-linked, few polymers resist swelling or dissolution in such solvents; however particular perfluoropolymers are resistant to almost all solvents except perfluorosolvents. One such polymer, designated AHP1, a glassy amorphous hydrophobic perfluorinated polymer, has been studied here. Additional perfluoropolymers studied here are hydrophilically modified (HMP2 and HMP3) versions to enhance the flux of polar aprotic solvents. OSN performances of three types of membranes including the hydrophilically modified ones were studied via solvent flux and solute rejection at pressures up to 5000 kPa. The solutes were four active pharmaceutical ingredients (APIs) or pharmaceutical intermediates having molecular weights (MWs) between 432 and 809 Da and three dyes, Oil Blue N (378 Da), Sudan Black B (456 Da), Brilliant Blue R (826 Da). Solvents used were: ethyl acetate, toluene, n- heptane, iso-octane, DMSO, tetrahydrofuran (THF), DMF, acetone, NMP, methanol. Test cells included stirred cells and tangential flow cells. Pure solvent fluxes through three membrane types were characterized using a particular parameter employing various solvent properties. All three membranes achieved high solute rejections around 91–98% at ambient temperatures. HMP2 membrane achieved 95% solute rejection for an API (809 Da) in DMSO at a high temperature, 75 ◦C. A two-stage simulated nanofiltration process achieved 99%+ rejection of a pharmaceutical intermediate (MW, 432 Da) in 75v% NMP-25v% ethyl acetate solution. 
    more » « less
  4. Abstract Membranes serve as important components for modern manufacturing and purification processes but are conventionally associated with excessive solvent usage. Here, for the first time, a procedure for fabricating large area polysulfone membranes is demonstrated via the combination of direct ink writing (DIW) with non-solvent induced phase inversion (NIPS). The superior control and precision of this process allows for complete utilization of the polymer dope solution during membrane fabrication, thus enabling a significant reduction in material usage. Compared to doctor blade fabrication, a 63% reduction in dope solution volume was achieved using the DIW technique for fabricating similarly sized membranes. Cross flow filtration analysis revealed that, independent of the manufacturing method (DIWvs.doctor blade), the membranes exhibited near identical separation properties. The separation properties were assessed in terms of bovine serum albumin (BSA) rejection and permeances (pressure normalized flux) of pure water and BSA solution. This new manufacturing strategy allows for the reduction of material and solvent usage while providing a large toolkit of tunable parameters which can aid in advancing membrane technology. 
    more » « less
  5. Nonsolvent induced phase separation (NIPS) is a widely occuring process used in industrial membrane production, nanotechnology and Nature to produce microstructured polymer materials. A variety of process-dependent morphologies are produced when a polymer solution is exposed to a nonsolvent that, following a period where mass is exchanged, precipitates and solidifies the polymer. Despite years of investigation, both experimental and theoretical, many questions surround the pathways to the microstructures that NIPS can produce. Here, we provide simulation results from a model that simultaneously captures both the processess of solvent/nonsolvent exchange and phase separation. We show that the time it takes the nonsolvent to diffuse to the bottom of the film is an important timescale, and that phase separation is possible at times both much smaller and much larger than this scale. Our results include both one-dimensional simulations of the mass transfer kinetics and two- and three-dimensional simulations of morphologies at both short and long times. We find good qualitative agreement with experimental heuristics, but we conclude that an additional model for the vitrification process will be key for fully explaining experimental observations of microstructure formation. 
    more » « less