skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An embedded microfluidic valve for dynamic control of cellular communication
The communication between different cell populations is an important aspect of many natural phenomena that can be studied with microfluidics. Using microfluidic valves, these complex interactions can be studied with a higher level of control by placing a valve between physically separated populations. However, most current valve designs do not display the properties necessary for this type of system, such as providing variable flow rate when embedded inside a microfluidic device. While some valves have been shown to have such tunable behavior, they have not been used for dynamic, real-time outputs. We present an electric solenoid valve that can be fabricated completely outside of a cleanroom and placed into any microfluidic device to offer control of dynamic fluid flow rates and profiles. After characterizing the behavior of this valve under controlled test conditions, we developed a regression model to determine the required input electrical signal to provide the solenoid the ability to create a desired flow profile. With this model, we demonstrated that the valve could be controlled to replicate a desired, time-varying pattern for the interface position of a co-laminar fluid stream. Our approach can be performed by other investigators with their microfluidic devices to produce predictable, dynamic fluidic behavior. In addition to modulating fluid flows, this work will be impactful for controlling cellular communication between distinct populations or even chemical reactions occurring in microfluidic channels.  more » « less
Award ID(s):
1946456
PAR ID:
10516252
Author(s) / Creator(s):
; ;
Publisher / Repository:
Applied Physics Letters
Date Published:
Journal Name:
Applied physics letters
Volume:
123
Issue:
24
ISSN:
1520-8842
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract An open-source pneumatic pressure pump is engineered for driving fluid flow in a microfluidic device. It is designed to be a cost-effective and customizable alternative to commercial systems. The pneumatic pressure pump utilizes a single open-source microcontroller to control four dual-valve pressure regulators. The control scheme is written in the Arduino development environment and the user interface is written in Python. The pump was used to pressurize water and a fluorinated oil that have similar viscosities. The pump can accurately control pressures to a resolution of less than 0.02 psig with rapid response times of less than one second, overshoot of desired pressures by less than 30%, and setting response times of less than two seconds. The pump was also validated in its ability to produce water-in-oil drops using a drop-making microfluidic device. The resultant drop size scaled as expected with the pressures applied to the emulsion phases. The pump is the first custom-made dual-valve regulator that is used to precisely control fluid flow in a microfluidic device. The presented design is an advancement towards making more fully open-source pneumatic pressure pumps for controlling flow in microfluidic devices. 
    more » « less
  2. null (Ed.)
    Regulation systems for fluid-driven soft robots predominantly consist of inflexible and bulky components. These rigid structures considerably limit the adaptability and mobility of these robots. Soft valves in various forms for fluidic actuators have been developed, primarily fluidically or electrically driven. However, fluidic soft valves require external pressure sources that limit robot locomotion. State-of-the-art electrostatic valves are unable to modulate pressure beyond 3.5 kPa with a sufficient flow rate (>6 mL⋅min −1 ). In this work, we present an electrically powered soft valve for hydraulic actuators with mesoscale channels based on a different class of ultrahigh-power density dynamic dielectric elastomer actuators. The dynamic dielectric elastomer actuators (DEAs) are actuated at 500 Hz or above. These DEAs generate 300% higher blocked force compared with the dynamic DEAs in previous works and their loaded power density reaches 290 W⋅kg −1 at operating conditions. The soft valves are developed with compact (7 mm tall) and lightweight (0.35 g) dynamic DEAs, and they allow effective control of up to 51 kPa of pressure and a 40 mL⋅min −1 flow rate with a response time less than 0.1 s. The valves can also tune flow rates based on their driving voltages. Using the DEA soft valves, we demonstrate control of hydraulic actuators of different volumes and achieve independent control of multiple actuators powered by a single pressure source. This compact and lightweight DEA valve is capable of unprecedented electrical control of hydraulic actuators, showing the potential for future onboard motion control of soft fluid-driven robots. 
    more » « less
  3. Abstract Transistor density trends till recently have been following Moore's law, doubling every generation resulting in increased power density. The computational performance gains with the breakdown of Moore's law were achieved by using multicore processors, leading to nonuniform power distribution and localized high temperatures making thermal management even more challenging. Cold plate-based liquid cooling has proven to be one of the most efficient technologies in overcoming these thermal management issues. Traditional liquid-cooled data center deployments provide a constant flow rate to servers irrespective of the workload, leading to excessive consumption of coolant pumping power. Therefore, a further enhancement in the efficiency of implementation of liquid cooling in data centers is possible. The present investigation proposes the implementation of dynamic cooling using an active flow control device to regulate the coolant flow rates at the server level. This device can aid in pumping power savings by controlling the flow rates based on server utilization. The flow control device design contains a V-cut ball valve connected to a microservo motor used for varying the device valve angle. The valve position was varied to change the flow rate through the valve by servomotor actuation based on predecided rotational angles. The device operation was characterized by quantifying the flow rates and pressure drop across the device by changing the valve position using both computational fluid dynamics and experiments. The proposed flow control device was able to vary the flow rate between 0.09 lpm and 4 lpm at different valve positions. 
    more » « less
  4. One of the key areas in which electronic cooling research has been focusing on, is addressing the issue of non-uniform at package level. This challenge has incited the use of numerous temperature sensing mechanisms for dynamic cooling of electronic components. What dynamic liquid cooling effectively does is, use feedback from sensors as inputs for the pumps, supplying more amounts of fluid to parts of the electronics that is warmer while supplying minimal fluid to the parts of the electronics that are relatively cooler. A novel approach to address uneven heating in a liquid cooled system is the use of a temperature sensing flow control device that can control flow rate based on temperature. The necessity of numerous temperature and pressure sensors, a suitable control system and the maintenance and reliability issues that they present, can be significantly minimized with the use of a self sensing and controlling flow control device. This paper looks at the flow analysis of a self-regulating flow control device (FCD) designed for electronic module for data center application. An axially rotating butterfly valve is used to regulate the flow rate of FCD. Linearization of the flow with respect to damper angle is studied by modifying the dimensional ratios of the rectangular cross section of the FCD. Pressure drop, and flow rate characterization is done for the FCD. 
    more » « less
  5. Electropermanent magnetic (EPM) valves consist of two permanent magnets, one with high coercivity and one with relatively low coercivity, which are able to rapidly redirect the flux within a magnetic circuit. When combined with magnetorheological (MR) fluid, they provide the ability to rapidly switch flow in a hydraulic circuit on or off. EPM valves contain no moving parts and draw no power except when changing state. These facts, along with their scalability, make them an attractive option for distributed flow control in small hydraulic systems. Current examples of EPM valves are often restricted to relatively low-pressure or low-flow operation. Miniaturization of small-scale hydraulic robots, both soft and rigid, is limited by the availability of sufficiently lightweight, compact, and efficient components which are capable of directing fluid at pressures greater than 700 kPa. This research proposes an EPM valve which leverages the magnetic properties of MR fluid to channel magnetic flux through the fluid. To evaluate the proposed geometry, an exploratory prototype was constructed and evaluated using a test-bench capable of evaluating the valve as a flow resistance. Simulations were conducted to evaluate the design and validate the use of simulation for future design iteration. To be of use in robotic systems, this valve needs to be capable of rapidly switching relatively high pressures while maintaining a highly compact and easily manufactured form factor. Due to its size and low power consumption, it is suitable for distributed hydraulic control in miniature systems such as hydraulically-actuated robots, including soft robots. 
    more » « less