There is little research or understanding of curricular differences between two- and four-year programs, career development of engineering technology (ET) students, and professional preparation for ET early career professionals [1]. Yet, ET credentials (including certificates, two-, and four-year degrees) represent over half of all engineering credentials awarded in the U.S [2]. ET professionals are important hands-on members of engineering teams who have specialized knowledge of components and engineering systems. This research study focuses on how career orientations affect engineering formation of ET students educated at two-year colleges. The theoretical framework guiding this study is Social Cognitive Career Theory (SCCT). SCCT is a theory which situates attitudes, interests, and experiences and links self-efficacy beliefs, outcome expectations, and personal goals to educational and career decisions and outcomes [3]. Student knowledge of attitudes toward and motivation to pursue STEM and engineering education can impact academic performance and indicate future career interest and participation in the STEM workforce [4]. This knowledge may be measured through career orientations or career anchors. A career anchor is a combination of self-concept characteristics which includes talents, skills, abilities, motives, needs, attitudes, and values. Career anchors can develop over time and aid in shaping personal and career identity [6]. The purpose of this quantitative research study is to identify dimensions of career orientations and anchors at various educational stages to map to ET career pathways. The research question this study aims to answer is: For students educated in two-year college ET programs, how do the different dimensions of career orientations, at various phases of professional preparation, impact experiences and development of professional profiles and pathways? The participants (n=308) in this study represent three different groups: (1) students in engineering technology related programs from a medium rural-serving technical college (n=136), (2) students in engineering technology related programs from a large urban-serving technical college (n=52), and (3) engineering students at a medium Research 1 university who have transferred from a two-year college (n=120). All participants completed Schein’s Career Anchor Inventory [5]. This instrument contains 40 six-point Likert-scale items with eight subscales which correlate to the eight different career anchors. Additional demographic questions were also included. The data analysis includes graphical displays for data visualization and exploration, descriptive statistics for summarizing trends in the sample data, and then inferential statistics for determining statistical significance. This analysis examines career anchor results across groups by institution, major, demographics, types of educational experiences, types of work experiences, and career influences. This cross-group analysis aids in the development of profiles of values, talents, abilities, and motives to support customized career development tailored specifically for ET students. These findings contribute research to a gap in ET and two-year college engineering education research. Practical implications include use of findings to create career pathways mapped to career anchors, integration of career development tools into two-year college curricula and programs, greater support for career counselors, and creation of alternate and more diverse pathways into engineering. Words: 489 References [1] National Academy of Engineering. (2016). Engineering technology education in the United States. Washington, DC: The National Academies Press. [2] The Integrated Postsecondary Education Data System, (IPEDS). (2014). Data on engineering technology degrees. [3] Lent, R.W., & Brown, S.B. (1996). Social cognitive approach to career development: An overivew. Career Development Quarterly, 44, 310-321. [4] Unfried, A., Faber, M., Stanhope, D.S., Wiebe, E. (2015). The development and validation of a measure of student attitudes toward science, technology, engineeirng, and math (S-STEM). Journal of Psychoeducational Assessment, 33(7), 622-639. [5] Schein, E. (1996). Career anchors revisited: Implications for career development in the 21st century. Academy of Management Executive, 10(4), 80-88. [6] Schein, E.H., & Van Maanen, J. (2013). Career Anchors, 4th ed. San Francisco: Wiley. 
                        more » 
                        « less   
                    
                            
                            The Academic and Personal Experiences of Engineering Technology and Welding Technology Students: A Literature Review
                        
                    
    
            Objective/Research Question: There is a growing demand for skilled workers in engineering and technology fields. However, the number of engineering technology degrees awarded is much less compared to engineering, and a high percentage of students in engineering technology do not persist beyond the first year. To meet the demands for skilled workers, it is important to understand the experiences of engineering technology students to identify factors that contribute to their matriculation and persistence. The purpose of this paper is to summarize the research that exists on the academic and personal experiences of engineering technology and welding technology students. The research questions guiding this study are: (a) what are the academic and personal experiences of engineering technology and welding technology students at 2- and 4-year institutions? and (b) what are students’ experiences with persisting in engineering technology? Methods: Using our research questions and predetermined inclusion criteria, we performed a literature review of relevant articles retrieved from Scopus and ERIC ProQuest databases. Results: We identify three areas of opportunities for future research examination: (a) experiences of students of marginalized populations in engineering technology, (b) how to leverage career and technical education and 2-year engineering technology programs to support matriculation, and (c) ways to address the negative stigma associated with engineering technology programs. Conclusions/Contributions: To meet the demands of the nation’s economy and future workforce, it is important to further examine the experiences of engineering technology students. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2000730
- PAR ID:
- 10516441
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Community College Review
- Volume:
- 52
- Issue:
- 4
- ISSN:
- 0091-5521
- Format(s):
- Medium: X Size: p. 458-483
- Size(s):
- p. 458-483
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This paper reports on a scholarship program funded by the National Science Foundation that focuses on students who transfer at the 3rd-year level from 2-year schools to the engineering and engineering technology BS programs at our university. The objectives of the program are to: (i) expand and diversify the engineering/technology workforce of the future, (ii) develop linkages and articulations with 2-year schools and their S-STEM (Scholarships in Science, Technology, Engineering and Mathematics) programs, (iii) provide increased career opportunities and job placement rates through mandatory paid co-op experiences, and (iv) serve as a model for other universities to provide vertical transfer students access to the baccalaureate degree. The program is in its third year. It recruited its first group of 25 students in Fall 2017, and another group of 27 students in Fall 2018. We hope to recruit 26 more students in Fall 2019 for a total of 78 vertical transfers. The goal is to retain and graduate at least 95% of these scholars. To enhance the success of these scholars, a zero-credit six-week orientation course was developed in Fall 2017 focusing on four dimensions of student wellness: academic, financial, social, and personal. This paper describes the development of this course, its content, and the modifications that were made to the course for Fall 2018. The paper will also address the research conducted in order to generate knowledge about the program elements that will be essential for the success of vertical transfer programs at other universities. Two research instruments are described: an online survey and a focus group interview that were developed, and administered to the transfer scholars in their first year. Initial findings concerning students’ experiences at their 2-year schools, their reason for transferring, their experience in transferring as well as their initial conceptions of what life at a 4-year institution will be like are presented.more » « less
- 
            Freitag, Nancy E. (Ed.)The National Summer Undergraduate Research Program (NSURP) is a mentored summer research program in biosciences for undergraduate students from underrepresented backgrounds in science, technology, engineering, and mathematics (STEM). Conducted virtually over 8 weeks every summer starting in 2020, NSURP provides accessible and flexible research experiences to meet the needs of geographically diverse and schedule-constrained students. Drawing from mentee reporting and surveys conducted within the NSURP framework involving over 350 underrepresented minority undergraduate students over three cohorts (2020–2022), matched with mentors, this paper highlights the potential benefits of students participating in virtual mentored research experiences. In addition to increased access to quality research experiences for students who face travel or academic setting constraints, we found that virtual mentoring fosters cross-cultural collaborations, generates novel research questions, and expands professional networks. Moreover, this study emphasizes the role of virtual mentorship opportunities in fostering inclusivity and support for individuals from underrepresented groups in STEM fields. By overcoming barriers to full participation in the scientific community, virtual mentorship programs can create a more equitable and inclusive environment for aspiring researchers. This research contributes to the growing body of literature on the effectiveness and the potential of virtual research programs and mentorship opportunities in broadening participation and breaking down barriers in STEM education and careers. IMPORTANCESummer Research Experiences for Undergraduates (REUs) are established to provide platforms for interest in scientific research and as tools for eventual matriculation to scientific graduate programs. Unfortunately, the COVID-19 pandemic forced the cancellation of in-person programs for 2020 and 2021, creating the need for alternative programming. The National Summer Undergraduate Research Project (NSURP) was created to provide a virtual option to REUs in microbiology to compensate for the pandemic-initiated loss of research opportunities. Although in-person REUs have since been restored, NSURP currently remains an option for those unable to travel to in-person programs in the first place due to familial, community, and/or monetary obligations. This study examines the effects of the program's first 3 years, documenting the students’ experiences, and suggests future directions and areas of study related to the impact of virtual research experiences on expanding and diversifying science, technology, engineering, and mathematics.more » « less
- 
            null (Ed.)This poster showcases the progress of students who are receiving scholarships from the National Science Foundation S-STEM project: A Pathway to Completion for Pursuing Engineering and Engineering Technology Degrees. Thus far, 20 academically high-achieving students who demonstrate financial need have participated in the project. Thirty-six scholarships have been awarded to date, in which a maximum of twelve scholarships are awarded per semester; some students have received scholarships multiple times. Students are from electrical engineering, computer engineering, mechanical engineering, civil engineering, civil engineering technology, and modeling and simulation majors. As part of this S-STEM project, students also receive academic support, mentorship related to the development of professional workforce skills, career search skills, and opportunities to participate in industry-related field trips. Role models, many of whom are practicing engineers with STEM degrees and are military veterans, serve as presenters and share their personal career pathways and answer students’ questions in the required one-hour weekly seminar. Although the students participating in this project meet the strenuous academic criteria set by the project (3.0/4.0), many of the students struggle financially, due to having expended their G.I. benefits, which can impede their academic performance and graduation. While many student success programs focus on freshman and sophomore students, what makes this project unique is its focus on enabling student success at the junior and senior years. This project provides a portfolio of different activities for the more mature student, e.g. financial aid through scholarships, community-based learning opportunities, and academic success strategies that enable stronger retention and student completion rates. Project activities are tailored to veterans and adult learners as this group of students is particularly vulnerable given their need to simultaneously juggle academic, family, and financial obligations.more » « less
- 
            Low-income students are underrepresented in engineering and are more likely to struggle in engineering programs. Such students may be academically talented and perform well in high school, but may have relatively weak academic preparation for college compared to students who attended better-resourced schools. Four-year engineering and computer science curricula are designed for students who are calculus-ready, but many students who are eager to become engineers or computer scientists need additional time and support to succeed. The NSF-funded Redshirt in Engineering Consortium was formed in 2016 as a collaborative effort to build on the success of three existing “academic redshirt” programs and expand the model to three new schools. The Consortium takes its name from the practice of redshirting in college athletics, with the idea of providing an extra year and support to promising engineering students from low-income backgrounds. The goal of the program is to enhance the students’ ability to successfully graduate with engineering or computer science degrees. This Work in Progress paper describes the redshirt programs at each of the six Consortium institutions, providing a variety of models for how an extra preparatory year or other intensive academic preparatory programs can be accommodated. This paper will pay particular attention to the ways that institutional context shapes the implementation of the redshirt model. For instance, what do the redshirt admissions and selection processes look like at schools with direct-to-college admissions versus schools with post-general education admissions? What substantive elements of the first-year curriculum are consistent across the consortium? Where variation in curriculum occurs, what are the institutional factors that produce this variation? How does the redshirt program fit with other pre-existing academic support services on campus, and what impact does this have on the redshirt program’s areas of focus? Program elements covered include first-year curricula, pre-matriculation summer programs, academic advising and support services, admissions and selection processes, and financial aid. Ongoing assessment efforts and research designed to investigate how the various redshirt models influence faculty and student experiences will be described.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
