skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Operationalizing cultural adaptation to climate change: contemporary examples from United States agriculture
It has been proposed that climate adaptation research can benefit from an evolutionary approach. But related empirical research is lacking. We advance the evolutionary study of climate adaptation with two case studies from contemporary United States agriculture. First, we define ‘cultural adaptation to climate change’ as a mechanistic process of population-level cultural change. We argue this definition enables rigorous comparisons, yields testable hypotheses from mathematical theory and distinguishes adaptive change, non-adaptive change and desirable policy outcomes. Next, we develop an operational approach to identify ‘cultural adaptation to climate change’ based on established empirical criteria. We apply this approach to data on crop choices and the use of cover crops between 2008 and 2021 from the United States. We find evidence that crop choices are adapting to local trends in two separate climate variables in some regions of the USA. But evidence suggests that cover cropping may be adapting more to the economic environment than climatic conditions. Further research is needed to characterize the process of cultural adaptation, particularly the routes and mechanisms of cultural transmission. Furthermore, climate adaptation policy could benefit from research on factors that differentiate regions exhibiting adaptive trends in crop choice from those that do not. This article is part of the theme issue ‘Climate change adaptation needs a science of culture’.  more » « less
Award ID(s):
2019470
PAR ID:
10516505
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Philosophical Transactions of the Royal Society B
Date Published:
Journal Name:
Philosophical Transactions of the Royal Society B: Biological Sciences
Volume:
378
Issue:
1889
ISSN:
0962-8436
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract People’s observations of climate change and its impacts, mediated by cultures and capacities, shape adaptive responses. Adaptation is critical in regions of rainfed smallholder agriculture where changing rainfall patterns have disproportionate impacts on livelihoods, yet scientific climate data to inform responses are often sparse. Despite calls for better integration of local knowledge into adaptation frameworks, there is a lack of empirical evidence linking both smallholder climate observations and scientific data to on-farm outcomes. We combine smallholder observations of past seasonal rainfall timing with satellite-based rainfall estimates in Uganda to explore whether farmers’ ability to track climate patterns is associated with higher crop yields. We show that high-fidelity tracking, or alignment of farmer recall with recent rainfall patterns, predicts higher yields in the present year, suggesting that farmers may translate their cumulative record of environmental knowledge into productive on-farm decisions, such as crop selection and timing of planting. However, tracking of less-recent rainfall (i.e., 1–2 decades in the past) does not predict higher yields in the present, while climate data indicate significant trends over this period toward warmer and wetter seasons. Our findings demonstrate the value of smallholder knowledge systems in filling information gaps in climate science while suggesting ways to improve adaptive capacity to climate change. 
    more » « less
  2. Abstract Public attitudes toward climate change influence climate and energy policies and guide individual mitigation and adaptation behaviors. Over the last decade, as scientific certainty about the causes and impacts of, and solutions to the climate crisis has increased, cities, states, and regions in the United States have pursued diverse policy strategies. Yet, our understanding of how Americans’ climate views are changing remains largely limited to national trends. Here we use a large US survey dataset ( N = 27 075 ) to estimate dynamic, state-level changes in 16 climate change beliefs, risk perceptions, and policy preferences over 13 years (2008–2020). We find increases in global warming issue importance and perceived harm in every state. Policy support, however, increased in more liberal states like California and New York, but remained stable elsewhere. Year-by-year estimates of state-level climate opinions can be used to support sub-national mitigation and adaptation efforts that depend on public support and engagement. 
    more » « less
  3. Abstract Understanding contributions of climate and management intensifications to crop yield trends is essential to better adapt to climate changes and gauge future food security. Here we quantified the synergistic contributions of climate and management intensifications to maize yield trends from 1961 to 2017 in Iowa (United States) using a process-based modeling approach with a detailed climatic and agronomic observation database. We found that climate (management intensifications) contributes to approximately 10% (90%), 26% (74%), and 31% (69%) of the yield trends during 1961–2017, 1984–2013, and 1982–1998, respectively. However, the climate contributions show substantial decadal or multi-decadal variations, with the maximum decadal yield trends induced by temperature or radiation changes close to management intensifications induced trends while considerably larger than precipitation induced trends. Management intensifications can produce more yield gains with increased precipitation but greater losses of yields with increased temperature, with extreme drought conditions diminishing the yield gains, while radiation changes have little effect on yield gains from management intensifications. Under the management condition of recent years, the average trend at the higher warming level was about twice lower than that at the lower warming level, and the sensitivity of yield to warming temperature increased with management intensifications from 1961 to 2017. Due to such synergistic effects, management intensifications must account for global warming and incorporate climate adaptation strategies to secure future crop productions. Additional research is needed to understand how plausible adaptation strategies can mitigate synergistic effects from climate and management intensifications. 
    more » « less
  4. Tringe, Susannah Green (Ed.)
    ABSTRACT Below-ground carbon transformations that contribute to healthy soils represent a natural climate change mitigation, but newly acquired traits adaptive to climate stress may alter microbial feedback mechanisms. To better define microbial evolutionary responses to long-term climate warming, we study microorganisms from an ongoingin situsoil warming experiment where, for over three decades, temperate forest soils are continuously heated at 5°C above ambient. We hypothesize that across generations of chronic warming, genomic signatures within diverse bacterial lineages reflect adaptations related to growth and carbon utilization. From our bacterial culture collection isolated from experimental heated and control plots, we sequenced genomes representing dominant taxa sensitive to warming, including lineages of Actinobacteria, Alphaproteobacteria, and Betaproteobacteria. We investigated genomic attributes and functional gene content to identify signatures of adaptation. Comparative pangenomics revealed accessory gene clusters related to central metabolism, competition, and carbon substrate degradation, with few functional annotations explicitly associated with long-term warming. Trends in functional gene patterns suggest genomes from heated plots were relatively enriched in central carbohydrate and nitrogen metabolism pathways, while genomes from control plots were relatively enriched in amino acid and fatty acid metabolism pathways. We observed that genomes from heated plots had less codon bias, suggesting potential adaptive traits related to growth or growth efficiency. Codon usage bias varied for organisms with similar 16Srrnoperon copy number, suggesting that these organisms experience different selective pressures on growth efficiency. Our work suggests the emergence of lineage-specific trends as well as common ecological-evolutionary microbial responses to climate change.IMPORTANCEAnthropogenic climate change threatens soil ecosystem health in part by altering below-ground carbon cycling carried out by microbes. Microbial evolutionary responses are often overshadowed by community-level ecological responses, but adaptive responses represent potential changes in traits and functional potential that may alter ecosystem function. We predict that microbes are adapting to climate change stressors like soil warming. To test this, we analyzed the genomes of bacteria from a soil warming experiment where soil plots have been experimentally heated 5°C above ambient for over 30 years. While genomic attributes were unchanged by long-term warming, we observed trends in functional gene content related to carbon and nitrogen usage and genomic indicators of growth efficiency. These responses may represent new parameters in how soil ecosystems feedback to the climate system. 
    more » « less
  5. Climate oscillations ranging from years to decades drive precipitation variability in many river basins globally. As a result, many regions will require new water infrastructure investments to maintain reliable water supply. However, current adaptation approaches focus on long-term trends, preparing for average climate conditions at mid- or end-of-century. The impact of climate oscillations, which bring prolonged and variable but temporary dry periods, on water supply augmentation needs is unknown. Current approaches for theory development in nature-society systems are limited in their ability to realistically capture the impacts of climate oscillations on water supply. Here, we develop an approach to build middle-range theory on how common climate oscillations affect low-cost, reliable water supply augmentation strategies. We extract contrasting climate oscillation patterns across sub-Saharan Africa and study their impacts on a generic water supply system. Our approach integrates climate model projections, nonstationary signal processing, stochastic weather generation, and reinforcement learning–based advances in stochastic dynamic control. We find that longer climate oscillations often require greater water supply augmentation capacity but benefit more from dynamic approaches. Therefore, in settings with the adaptive capacity to revisit planning decisions frequently, longer climate oscillations do not require greater capacity. By building theory on the relationship between climate oscillations and least-cost reliable water supply augmentation, our findings can help planners target scarce resources and guide water technology and policy innovation. This approach can be used to support climate adaptation planning across large spatial scales in sectors impacted by climate variability. 
    more » « less