We show that the non-Archimedean skeleton of the d d -th symmetric power of a smooth projective algebraic curve X X is naturally isomorphic to the d d -th symmetric power of the tropical curve that arises as the non-Archimedean skeleton of X X . The retraction to the skeleton is precisely the specialization map for divisors. Moreover, we show that the process of tropicalization naturally commutes with the diagonal morphisms and the Abel-Jacobi map and we exhibit a faithful tropicalization for symmetric powers of curves. Finally, we prove a version of the Bieri-Groves Theorem that allows us, under certain tropical genericity assumptions, to deduce a new tropical Riemann-Roch-Theorem for the tropicalization of linear systems. 
                        more » 
                        « less   
                    
                            
                            Tropical and non-Archimedean Monge–Ampère equations for a class of Calabi–Yau hypersurfaces
                        
                    
    
            For a large class of maximally degenerate families of Calabi–Yau hypersurfaces of complex projective space, we study non- Archimedean and tropical Monge–Ampère equations, taking place on the associated Berkovich space, and the essential skeleton therein, respectively. For a symmetric measure on the skeleton, we prove that the tropical equation admits a unique solution, up to an additive constant. Moreover, the solution to the non-Archimedean equation can be derived from the tropical solution, and is the restriction of a continuous semipositive toric metric on projective space. Together with the work of Yang Li, this implies the weak metric SYZ conjecture on the existence of special Lagrangian fibrations in our setting. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10516579
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Advances in Mathematics
- Volume:
- 439
- Issue:
- C
- ISSN:
- 0001-8708
- Page Range / eLocation ID:
- 109494
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract It is a long-standing open question whether every Polish group that is not locally compact admits a Borel action on a standard Borel space whose associated orbit equivalence relation is not essentially countable. We answer this question positively for the class of all Polish groups that embed in the isometry group of a locally compact metric space. This class contains all non-archimedean Polish groups, for which we provide an alternative proof based on a new criterion for non-essential countability. Finally, we provide the following variant of a theorem of Solecki: every infinite-dimensional Banach space has a continuous action whose orbit equivalence relation is Borel but not essentially countable.more » « less
- 
            Novikov, Krichever (Ed.)In [TV19a] the equivariant quantum differential equation (qDE) for a projective space was considered and a compatible system of difference qKZ equations was introduced; the space of solutions to the joint system of the qDE and qKZ equations was identified with the space of the equivariant K-theory algebra of the projective space; Stokes bases in the space of solutions were identified with exceptional bases in the equivariant K-theory algebra. This paper is a continuation of [TV19a]. We describe the relation between solutions to the joint system of the qDE and qKZ equations and the topological-enumerative solution to the qDE only, defined as a generating function of equivariant descendant Gromov-Witten invariants. The relation is in terms of the equivariant graded Chern character on the equivariant K-theory algebra, the equivariant Gamma class of the projective space, and the equivariant first Chern class of the tangent bundle of the projective space. We consider a Stokes basis, the associated exceptional basis in the equivariant K-theory algebra, and the associated Stokes matrix. We show that the Stokes matrix equals the Gram matrix of the equivariant Grothendieck-Euler-Poincaré pairing wrt to the basis, which is the left dual to the associated exceptional basis. We identify the Stokes bases in the space of solutions with explicit full exceptional collections in the equivariant derived category of coherent sheaves on the projective space, where the elements of those exceptional collections are just line bundles on the projective space and exterior powers of the tangent bundle of the projective space. These statements are equivariant analogs of results of G. Cotti, B. Dubrovin, D. Guzzetti, and S. Galkin, V. Golyshev, H. Iritani.more » « less
- 
            Gradient flow approach to an exponential thin film equation: global existence and latent singularitynull (Ed.)In this work, we study a fourth order exponential equation, u t = Δ e −Δ u derived from thin film growth on crystal surface in multiple space dimensions. We use the gradient flow method in metric space to characterize the latent singularity in global strong solution, which is intrinsic due to high degeneration. We define a suitable functional, which reveals where the singularity happens, and then prove the variational inequality solution under very weak assumptions for initial data. Moreover, the existence of global strong solution is established with regular initial data.more » « less
- 
            null (Ed.)Let [Formula: see text] be a group acting properly and by isometries on a metric space [Formula: see text]; it follows that the quotient or orbit space [Formula: see text] is also a metric space. We study the Vietoris–Rips and Čech complexes of [Formula: see text]. Whereas (co)homology theories for metric spaces let the scale parameter of a Vietoris–Rips or Čech complex go to zero, and whereas geometric group theory requires the scale parameter to be sufficiently large, we instead consider intermediate scale parameters (neither tending to zero nor to infinity). As a particular case, we study the Vietoris–Rips and Čech thickenings of projective spaces at the first scale parameter where the homotopy type changes.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    