Graph signal processing (GSP) techniques are powerful tools that model complex relationships within large datasets, being now used in a myriad of applications in different areas including data science, communication networks, epidemiology, and sociology. Simple graphs can only model pairwise relationships among data which prevents their application in modeling networks with higher-order relationships. For this reason, some efforts have been made to generalize well-known graph signal processing techniques to more complex graphs such as hypergraphs, which allow capturing higher-order relationships among data. In this article, we provide a new hypergraph signal processing framework (t-HGSP) based on a novel tensor-tensor product algebra that has emerged as a powerful tool for preserving the intrinsic structures of tensors. The proposed framework allows the generalization of traditional GSP techniques while keeping the dimensionality characteristic of the complex systems represented by hypergraphs. To this end, the core elements of the t-HGSP framework are introduced, including the shifting operators and the hypergraph signal. The hypergraph Fourier space is also defined, followed by the concept of bandlimited signals and sampling. In our experiments, we demonstrate the benefits of our approach in applications such as clustering and denoising.
more »
« less
Learning Hypergraphs Tensor Representations From Data via t-HGSP
Representation learning considering high-order relationships in data has recently shown to be advantageous in many applications. The construction of a meaningful hypergraph plays a crucial role in the success of hypergraph-based representation learning methods, which is particularly useful in hypergraph neural networks and hypergraph signal processing. However, a meaningful hypergraph may only be available in specific cases. This paper addresses the challenge of learning the underlying hypergraph topology from the data itself. As in graph signal processing applications, we consider the case in which the data possesses certain regularity or smoothness on the hypergraph. To this end, our method builds on the novel tensor-based hypergraph signal processing framework (t-HGSP) that has recently emerged as a powerful tool for preserving the intrinsic high-order structure of data on hypergraphs. Given the hypergraph spectrum and frequency coefficient definitions within the t-HGSP framework, we propose a method to learn the hypergraph Laplacian from data by minimizing the total variation on the hypergraph (TVL-HGSP). Additionally, we introduce an alternative approach (PDL-HGSP) that improves the connectivity of the learned hypergraph without compromising sparsity and use primal-dual-based algorithms to reduce the computational complexity. Finally, we combine the proposed learning algorithms with novel tensor-based hypergraph convolutional neural networks to propose hypergraph learning-convolutional neural networks (t-HyperGLNN).
more »
« less
- Award ID(s):
- 2230162
- PAR ID:
- 10516748
- Publisher / Repository:
- https://ieeexplore.ieee.org
- Date Published:
- Journal Name:
- IEEE Transactions on Signal and Information Processing over Networks
- Volume:
- 10
- ISSN:
- 2373-7778
- Page Range / eLocation ID:
- 17 to 31
- Subject(s) / Keyword(s):
- Topology Signal processing algorithms Network topology Tensors Eigenvalues and eigenfunctions Laplace equations Biological neural networks Hypergraph topology learning hypergraph neural networks
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hypergraph neural networks (HyperGNNs) are a family of deep neural networks designed to perform inference on hypergraphs. HyperGNNs follow either a spectral or a spatial approach, in which a convolution or message-passing operation is conducted based on a hypergraph algebraic descriptor. While many HyperGNNs have been proposed and achieved state-of-the-art performance on broad applications, there have been limited attempts at exploring high-dimensional hypergraph descriptors (tensors) and joint node interactions carried by hyperedges. In this article, we depart from hypergraph matrix representations and present a new tensor-HyperGNN (T-HyperGNN) framework with cross-node interactions (CNIs). The T-HyperGNN framework consists of T-spectral convolution, T-spatial convolution, and T-message-passing HyperGNNs (T-MPHN). The T-spectral convolution HyperGNN is defined under the t-product algebra that closely connects to the spectral space. To improve computational efficiency for large hypergraphs, we localize the T-spectral convolution approach to formulate the T-spatial convolution and further devise a novel tensor-message-passing algorithm for practical implementation by studying a compressed adjacency tensor representation. Compared to the state-of-the-art approaches, our T-HyperGNNs preserve intrinsic high-order network structures without any hypergraph reduction and model the joint effects of nodes through a CNI layer. These advantages of our T-HyperGNNs are demonstrated in a wide range of real-world hypergraph datasets. The implementation code is available at https://github.com/wangfuli/T-HyperGNNs.git.more » « less
-
Demeniconi, C.; Davidson, I (Ed.)Many irregular domains such as social networks, financial transactions, neuron connections, and natural language constructs are represented using graph structures. In recent years, a variety of graph neural networks (GNNs) have been successfully applied for representation learning and prediction on such graphs. In many of the real-world applications, the underlying graph changes over time, however, most of the existing GNNs are inadequate for handling such dynamic graphs. In this paper we propose a novel technique for learning embeddings of dynamic graphs using a tensor algebra framework. Our method extends the popular graph convolutional network (GCN) for learning representations of dynamic graphs using the recently proposed tensor M-product technique. Theoretical results presented establish a connection between the proposed tensor approach and spectral convolution of tensors. The proposed method TM-GCN is consistent with the Message Passing Neural Network (MPNN) framework, accounting for both spatial and temporal message passing. Numerical experiments on real-world datasets demonstrate the performance of the proposed method for edge classification and link prediction tasks on dynamic graphs. We also consider an application related to the COVID-19 pandemic, and show how our method can be used for early detection of infected individuals from contact tracing data.more » « less
-
Hypergraphs are used to model higher-order interactions amongst agents and there exist many practically relevant instances of hypergraph datasets. To enable the efficient processing of hypergraph data, several hypergraph neural network plat- forms have been proposed for learning hypergraph properties and structure, with a special focus on node classification tasks. However, almost all existing methods use heuristic propagation rules and offer suboptimal performance on benchmark- ing datasets. We propose AllSet, a new hypergraph neural network paradigm that represents a highly general framework for (hyper)graph neural networks and for the first time implements hypergraph neural network layers as compositions of two multiset functions that can be efficiently learned for each task and each dataset. The proposed AllSet framework also for the first time integrates Deep Sets and Set Transformers with hypergraph neural networks for the purpose of learning mul- tiset functions and therefore allows for significant modeling flexibility and high expressive power. To evaluate the performance of AllSet, we conduct the most ex- tensive experiments to date involving ten known benchmarking datasets and three newly curated datasets that represent significant challenges for hypergraph node classification. The results demonstrate that our method has the unique ability to either match or outperform all other hypergraph neural networks across the tested datasets: As an example, the performance improvements over existing methods and a new method based on heterogeneous graph neural networks are close to 4% on the Yelp and Zoo datasets, and 3% on the Walmart dataset. Our AllSet network implementation is available online.more » « less
-
Early detection of wildfire smoke in real-time is essentially important in forest surveillance and monitoring systems. We propose a vision-based method to detect smoke using Deep Convolutional Generative Adversarial Neural Networks (DC-GANs). Many existing supervised learning approaches using convolutional neural networks require substantial amount of labeled data. In order to have a robust representation of sequences with and without smoke, we propose a two-stage training of a DCGAN. Our training framework includes, the regular training of a DCGAN with real images and noise vectors, and training the discriminator separately using the smoke images without the generator. Before training the networks, the temporal evolution of smoke is also integrated with a motion-based transformation of images as a pre-processing step. Experimental results show that the proposed method effectively detects the smoke images with negligible false positive rates in real-time.more » « less
An official website of the United States government

