Representation learning considering high-order relationships in data has recently shown to be advantageous in many applications. The construction of a meaningful hypergraph plays a crucial role in the success of hypergraph-based representation learning methods, which is particularly useful in hypergraph neural networks and hypergraph signal processing. However, a meaningful hypergraph may only be available in specific cases. This paper addresses the challenge of learning the underlying hypergraph topology from the data itself. As in graph signal processing applications, we consider the case in which the data possesses certain regularity or smoothness on the hypergraph. To this end, our method builds on the novel tensor-based hypergraph signal processing framework (t-HGSP) that has recently emerged as a powerful tool for preserving the intrinsic high-order structure of data on hypergraphs. Given the hypergraph spectrum and frequency coefficient definitions within the t-HGSP framework, we propose a method to learn the hypergraph Laplacian from data by minimizing the total variation on the hypergraph (TVL-HGSP). Additionally, we introduce an alternative approach (PDL-HGSP) that improves the connectivity of the learned hypergraph without compromising sparsity and use primal-dual-based algorithms to reduce the computational complexity. Finally, we combine the proposed learning algorithms with novel tensor-based hypergraph convolutional neural networks to propose hypergraph learning-convolutional neural networks (t-HyperGLNN).
more »
« less
t-HGSP: Hypergraph Signal Processing Using t-Product Tensor Decompositions
Graph signal processing (GSP) techniques are powerful tools that model complex relationships within large datasets, being now used in a myriad of applications in different areas including data science, communication networks, epidemiology, and sociology. Simple graphs can only model pairwise relationships among data which prevents their application in modeling networks with higher-order relationships. For this reason, some efforts have been made to generalize well-known graph signal processing techniques to more complex graphs such as hypergraphs, which allow capturing higher-order relationships among data. In this article, we provide a new hypergraph signal processing framework (t-HGSP) based on a novel tensor-tensor product algebra that has emerged as a powerful tool for preserving the intrinsic structures of tensors. The proposed framework allows the generalization of traditional GSP techniques while keeping the dimensionality characteristic of the complex systems represented by hypergraphs. To this end, the core elements of the t-HGSP framework are introduced, including the shifting operators and the hypergraph signal. The hypergraph Fourier space is also defined, followed by the concept of bandlimited signals and sampling. In our experiments, we demonstrate the benefits of our approach in applications such as clustering and denoising.
more »
« less
- Award ID(s):
- 2230162
- PAR ID:
- 10516753
- Publisher / Repository:
- ieeexplore.ieee.org
- Date Published:
- Journal Name:
- IEEE Transactions on Signal and Information Processing over Networks
- Volume:
- 9
- ISSN:
- 2373-7778
- Page Range / eLocation ID:
- 329 to 345
- Subject(s) / Keyword(s):
- Tensors Signal processing Fourier transforms Laplace equations Data models Symmetric matrices Point cloud compression Graph Signal Processing Tensor Data Analysis
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hypergraph neural networks (HyperGNNs) are a family of deep neural networks designed to perform inference on hypergraphs. HyperGNNs follow either a spectral or a spatial approach, in which a convolution or message-passing operation is conducted based on a hypergraph algebraic descriptor. While many HyperGNNs have been proposed and achieved state-of-the-art performance on broad applications, there have been limited attempts at exploring high-dimensional hypergraph descriptors (tensors) and joint node interactions carried by hyperedges. In this article, we depart from hypergraph matrix representations and present a new tensor-HyperGNN (T-HyperGNN) framework with cross-node interactions (CNIs). The T-HyperGNN framework consists of T-spectral convolution, T-spatial convolution, and T-message-passing HyperGNNs (T-MPHN). The T-spectral convolution HyperGNN is defined under the t-product algebra that closely connects to the spectral space. To improve computational efficiency for large hypergraphs, we localize the T-spectral convolution approach to formulate the T-spatial convolution and further devise a novel tensor-message-passing algorithm for practical implementation by studying a compressed adjacency tensor representation. Compared to the state-of-the-art approaches, our T-HyperGNNs preserve intrinsic high-order network structures without any hypergraph reduction and model the joint effects of nodes through a CNI layer. These advantages of our T-HyperGNNs are demonstrated in a wide range of real-world hypergraph datasets. The implementation code is available at https://github.com/wangfuli/T-HyperGNNs.git.more » « less
-
Hypergraphs capture multi-way relationships in data, and they have consequently seen a number of applications in higher-order network analysis, computer vision, geometry processing, and machine learning. In this paper, we develop theoretical foundations for studying the space of hypergraphs using ingredients from optimal transport. By enriching a hypergraph with probability measures on its nodes and hyperedges, as well as relational information capturing local and global structures, we obtain a general and robust framework for studying the collection of all hypergraphs. First, we introduce a hypergraph distance based on the co-optimal transport framework of Redko et al. and study its theoretical properties. Second, we formalize common methods for transforming a hypergraph into a graph as maps between the space of hypergraphs and the space of graphs, and study their functorial properties and Lipschitz bounds. Finally, we demonstrate the versatility of our Hypergraph Co-Optimal Transport (HyperCOT) framework through various examples.more » « less
-
null (Ed.)The key role of emotions in human life is undeniable. The question of whether there exists a brain pattern associated with a specific emotion is the theme of many affective neuroscience studies. In this work, we bring to bear graph signal processing (GSP) techniques to tackle the problem of automatic emotion recognition using brain signals. GSP is an extension of classical signal processing methods to complex networks where there exists an inherent relation graph. With the help of GSP, we propose a new framework for learning class-specific discriminative graphs. To that end, firstly we assume for each class of observations there exists a latent underlying graph representation. Secondly, we consider the observations are smooth on their corresponding class-specific sough graph while they are non-smooth on other classes’ graphs. The learned class-specific graph-based representations can act as sub-dictionaries and be utilized for the task of emotion classification. Applying the proposed method on an electroencephalogram (EEG) emotion recognition dataset indicates the superiority of our framework over other state-of-the-art methods.more » « less
-
Graph signal processing (GSP) is an emerging field developed for analyzing signals defined on irregular spatial structures modeled as graphs. Given the considerable literature regarding the resilience of infrastructure networks using graph theory, it is not surprising that a number of applications of GSP can be found in the resilience domain. GSP techniques assume that the choice of graphical Fourier transform (GFT) imparts a particular spectral structure on the signal of interest. We assess a number of power distribution systems with respect to metrics of signal structure and identify several correlates to system properties and further demonstrate how these metrics relate to performance of some GSP techniques. We also discuss the feasibility of a data-driven approach that improves these metrics and apply it to a water distribution scenario. Overall, we find that many of the candidate systems analyzed are properly structured in the chosen GFT basis and amenable to GSP techniques, but identify considerable variability and nuance that merits future investigation.more » « less
An official website of the United States government

